• Title/Summary/Keyword: live load

Search Result 341, Processing Time 0.026 seconds

Structural Analysis Models to Develop Live Load Distribution Factors of Simply Supported Prestressed Concrete I-Girder Bridge (활하중 분배계수식 개발을 위한 I형 프리스트레스트 콘크리트 거더 교량의 구조해석 모델)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Structural analysis models to develop live load distribution factors of simply supported prestressed concrete I-girder bridge should have the precision of the analysis results as well as modeling simplicity. This is due to the numerous frequency of structural analysis needed while developing live load distribution factors. In this study, an appropriate structural analysis model is selected by comparing previous researchs studies and models used in practical design. Also, the influence by the flexural stiffness of barrier and diaphragm on the live load distribution had been analyzed through comparing the numerical analysis and experimental tests. As a result, the model that the eccentric girder and the barrier and diaphragm are connected to the deck plate was appropriate in satisfying both accuracy and simplicity for structural analysis of simply supported prestressed concrete I-girder bridge. However, the barrier was analyzed to have insignificant influence on the live load distribution in spite of its variation of stiffness. The eccentric diaphragm showed little influence at 25% or higher of flexural stiffness. From the results, a model that the girder is rigidly connected to the deck plate in consideration of the eccentricity, the barrier is ignored and the whole section of diaphragm is supposed to be valid without eccentricity is decided as the most appropriate structural model to develop the live load distribution factors of simply supported prestressed concrete I-girder bridge in this study.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

The Research of the Heavy-Weight Impact Sound Characteristic by Live load Installation on the Source Room (공동주택 음원실 바닥의 하중 설치에 따른 중량충격음 특성에 관한 연구)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Sohn, Jang-Yeul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.235-242
    • /
    • 2007
  • The test and evaluation of floor impact sound is mainly conducted before move in the residence. Floor impact sound generating is actually the conditions in which a heavy load like a curtain and furniture is installed, the situation before and after move in the residence is different. In this study, we investigate the floor impact sound variations according to the live load installation like furniture in the source room. The vibration acceleration level and floor impact sound level variation were measured before and after live load ($200kg/m^2$) installation in the floor impact sound test building and the field. The difference was not large although the vibration acceleration level and the floor impact sound level were reduced through measurement result of load installation. Resonance frequency was not changed by load installation.

Structural Performance and Behavior of Concrete Floating Container Terminal by Live Load Distributions (활하중 분포에 따른 콘크리트 부유식 컨테이너 터미널의 구조성능 및 거동)

  • Lee, Du-Ho;Jeong, Yun-Ju;You, Young-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.72-80
    • /
    • 2015
  • In this study, comparative analysis has been performed with regard to a bending stress and deformation at bottom slab of a concrete floating container terminal by live load distributions. In addition, a structural performance and behavior of the floating structure is considered using a numerical analysis. Through reviewed structural performance of a floating structure by live load distribution, the structure presented tensile behavior by two live load cases (A, B, D-type). Then, the other live load cases (C, E, F, G, H, I, J-type) shows compressive behavior. Especially, immoderately compressive stress was generated on bottom slab at specific load distribution. but, that should be decreased through controling buoyancy pre-flexion. Through reviewed structural behavior, slopes of structure by four live load cases (B, E, F, H-type) were exceeded in design criteria of mega-float. It should be estimated that it get out of the load case at loading container. In all, the present study can be considered as a benchmark of a floating container terminal in the absence of analysis and will be used to guide-line about serviceability of concrete floating container terminal.

A Study on the Blind Type of Waterproofing Layer of Wheel Tracking of Test Method and Valuation on Working of Live Load (이동하중이 작용하는 비노출 방수층의 윤하중 시험방법 및 평가에 관한 연구)

  • Eom Deok-Jun;Seon Yun-Suk;Kwon Si-Won;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.1-5
    • /
    • 2005
  • There are a lot of problem about waterproofing membrane coating for concrete deck of bridge and waterproofing sheets for concrete of deck of bridge because it couldn't confirm waterproofing's defeat after construction. These problems make a waterproofing material damage and concrete deck of bridge damage. So It needs a lot of money for repair work and reinforcement work. Therefor the structure slab of using waterproofing material protect invasion of water. Also, Concrete deck of bridge need a endurance permeability for the reduction repair payment. In this study, An experimental study on the quality standardization test method waterproofing layer on working of live load

  • PDF

Proactive Virtual Network Function Live Migration using Machine Learning (머신러닝을 이용한 선제적 VNF Live Migration)

  • Jeong, Seyeon;Yoo, Jae-Hyoung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • VM (Virtual Machine) live migration is a server virtualization technique for deploying a running VM to another server node while minimizing downtime of a service the VM provides. Currently, in cloud data centers, VM live migration is widely used to apply load balancing on CPU workload and network traffic, to reduce electricity consumption by consolidating active VMs into specific location groups of servers, and to provide uninterrupted service during the maintenance of hardware and software update on servers. It is critical to use VMlive migration as a prevention or mitigation measure for possible failure when its indications are detected or predicted. In this paper, we propose two VNF live migration methods; one for predictive load balancing and the other for a proactive measure in failure. Both need machine learning models that learn periodic monitoring data of resource usage and logs from servers and VMs/VNFs. We apply the second method to a vEPC (Virtual Evolved Pakcet Core) failure scenario to provide a detailed case study.

Development of Statistical Truck Load Model for Highway Bridge using BWIM System (BWIM 시스템을 이용한 고속도로 교량 차량하중 모형 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Bae, Doo-Byong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.143-153
    • /
    • 2006
  • In design of bridges, estimation of actions and loadings is very important for the safety and maintenance of bridges. In general, effect of traffic loading on the bridge can be modeled as live load (including impact load) and fatigue load. For estimation of traffic loading, it is important to get reliable and comprehensive truck statistical data such as the traffic and weight information. To get statistical data, Bridge Weigh-In-Motion (BWIM), which measures the truck weights without stopping the traffic, is need to be developed. In this study, BWIM system with various functions is developed first. Then this system is used to get comprehensive truck data. Traffic loadings including fatigue and live loading are formulated from the truck data acquired from the bridges. Objectives of this study are to develop the BWIM system, to apply the system in test bridge in Highway, and to formulate the live and fatigue loading for bridge design.

A Study on Load distribution Effect for Bridge Structures (교량 구조의 하중분배 효과에 관한 연구)

  • 정철헌;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

Effects of dead loads on the static analysis of plates

  • Takabatake, Hideo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.761-781
    • /
    • 2012
  • The collapse of structures due to snow loads on roofs occurs frequently for steel structures and rarely for reinforced concrete structures. Since the most significant difference between these structures is related to their ability to handle dead loads, dead loads are believed to play an important part in the collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress couples produced by live loads is presented for plates with different edge conditions. The governing equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton's principle. The existence and effect of dead loads are proven by numerical calculations based on the Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving, in approximate terms, the governing equation that includes the effect of dead loads, and this solution is then examined. The effect of dead loads on static live loads can be explained explicitly by means of this closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an example. The present study investigates an additional factor in lightweight roof structural elements, which should be considered due to their recent development.

Safety Evaluation of Concrete Bridges for Passage of Crane Vehicle Exceeding Weight Limit (제한 중량을 초과하는 기중기 차량 통행에 대한 콘크리트 교량의 안전성 평가)

  • Lee, Sung-Jae;Yu, Sang Seon;Park, Younghwan;Paik, Inyeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.92-101
    • /
    • 2020
  • It is necessary to develop a rational method for evaluating the safety of bridges for the passage of inseparable crane vehicles exceeding the limit weight. In this study, the same method applied to the development of the recently introduced reliability-based highway bridge design code - limit state design method is applied to the calibration of the live load factor for the crane vehicle. Structural analysis was performed on the concrete bridge and the required strengths of the previous design code, the current design code and AASHTO LRFD were compared. When comparing the unfactored live load effect, the live load of the crane was greater than that of the current and previous design code. When comparing the required strength by applying the calibrated live load factor, the previous design code demands the largest strength and the current design code and the crane live load effect yields similar value. The results of safety evaluation of the actual bridges on the candidate route for the crane passage secured the same reliability as the target reliability index required by the design code and the strength of the cross section of the actual bridge is calculated greater than the required strength for the passage of the crane, which confirms the safety for the passage of the crane.