DOI QR코드

DOI QR Code

Structural Performance and Behavior of Concrete Floating Container Terminal by Live Load Distributions

활하중 분포에 따른 콘크리트 부유식 컨테이너 터미널의 구조성능 및 거동

  • 이두호 (한국건설기술연구원 인프라구조연구실) ;
  • 정연주 (한국건설기술연구원 인프라구조연구실) ;
  • 유영준 (한국건설기술연구원 인프라구조연구실)
  • Received : 2014.05.29
  • Accepted : 2014.09.23
  • Published : 2015.01.30

Abstract

In this study, comparative analysis has been performed with regard to a bending stress and deformation at bottom slab of a concrete floating container terminal by live load distributions. In addition, a structural performance and behavior of the floating structure is considered using a numerical analysis. Through reviewed structural performance of a floating structure by live load distribution, the structure presented tensile behavior by two live load cases (A, B, D-type). Then, the other live load cases (C, E, F, G, H, I, J-type) shows compressive behavior. Especially, immoderately compressive stress was generated on bottom slab at specific load distribution. but, that should be decreased through controling buoyancy pre-flexion. Through reviewed structural behavior, slopes of structure by four live load cases (B, E, F, H-type) were exceeded in design criteria of mega-float. It should be estimated that it get out of the load case at loading container. In all, the present study can be considered as a benchmark of a floating container terminal in the absence of analysis and will be used to guide-line about serviceability of concrete floating container terminal.

본 연구에서는 총 10가지 다양한 컨테이너 활하중 분포에 따른 콘크리트 부유식 컨테이너 터미널 하부슬래브의 휨응력분포와 변위분포를 비교분석하였다. 또한, 대상구조물의 구조성능과 거동을 수치해석적으로 검토하였다. 활하중 분포에 따른 구조성능 검토결과 3가지 하중분포 (A, B, D-type)는 인장거동을 보이며, 그 외의 7가지 하중분포 (C, E, F, G, H, I, J-type)에서는 압축거동을 나타내었다. 특히, D, F-type에서는 과도한 압축응력이 발생하였으며, 부력 프리플랙션 제어를 통하여 압축응력을 저감할 수 있을 것으로 사료된다. 활하중 분포에 따른 구조거동 검토결과 B, E, F, I-type에 대한 부유구조체의 기울기가 메가플로트 기준을 초과하였으며, 이와 같은 하중분포는 컨테이너 적하 시에 회피해야 될 것으로 판단된다. 종합적으로, 부유식 컨테이너 터미널에 관련된 기준 및 연구가 많지 않은 현실을 감안할 때, 본 연구는 컨테이너 터미널의 구조성능 및 거동을 검토를 위한 초석이 될 것이며, 사용 가이드라인으로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Allen, E., Dees, D., Hicks, S., Holibaugh, R., Martin, T., Starling, T. (2006), Design of a Floating Production, Storage and Offloading Vessel for Offshore Indonesia, Texas A&M University.
  2. ANSYS Inc. (2010), ANSYS User's Manual.
  3. Clark, A. P. (1949), Bond of Concrete to Reinforcing Bars, Journal Proceedings, ACI, 46(11), 161-184.
  4. Haveman, C., Pariliament, J., Sokol, J., Swenson, J., Wagner, T. (2006), Design of a Floating, Production, Storage, and Offloading Vessel for Operation in the South China Sea, Texas A&M University.
  5. Kim, H. S. (2010), Improvement for RTLS-based Container Yard Tractors by Optimizing Moving Distance, Pu-Kyoung University, Department of Computer Science.
  6. Korea Road & Transportation Association (2010), Design Code for Highway Bridges.
  7. Lee, D. H., Jeong, Y. J. (2012), Analytical Study on Buoyancu Preflexion Effects on Structural Performance of Concrete Floating Structure, KSCE, 32(2A), 75-93 (in Korean, with English abstract).
  8. Suzuki, H. (2004), Overview of Mega-Float: Concept, Design Criteria and Analysis and Design, Marine Structure, 18, 111-132.
  9. Yang, C. H., Choi, S. H., Kim, W. S., Lee, J. H., Jang, S. (2003), Study on Development of the Future-Oriented Container Terminal using Floating Structures, KMI.
  10. Zi, G. S., Lee, S. J., Kwak, Y. M., Jeong, Y. J. (2012), A Parametric Study on Tensile Stress of a Hybrid Floating Structure System, KSCE, 32(5B), 313-320 (in Korean, with English abstract). https://doi.org/10.12652/Ksce.2012.32.5B.313