DOI QR코드

DOI QR Code

Safety Evaluation of Concrete Bridges for Passage of Crane Vehicle Exceeding Weight Limit

제한 중량을 초과하는 기중기 차량 통행에 대한 콘크리트 교량의 안전성 평가

  • Received : 2020.10.21
  • Accepted : 2020.11.20
  • Published : 2020.12.31

Abstract

It is necessary to develop a rational method for evaluating the safety of bridges for the passage of inseparable crane vehicles exceeding the limit weight. In this study, the same method applied to the development of the recently introduced reliability-based highway bridge design code - limit state design method is applied to the calibration of the live load factor for the crane vehicle. Structural analysis was performed on the concrete bridge and the required strengths of the previous design code, the current design code and AASHTO LRFD were compared. When comparing the unfactored live load effect, the live load of the crane was greater than that of the current and previous design code. When comparing the required strength by applying the calibrated live load factor, the previous design code demands the largest strength and the current design code and the crane live load effect yields similar value. The results of safety evaluation of the actual bridges on the candidate route for the crane passage secured the same reliability as the target reliability index required by the design code and the strength of the cross section of the actual bridge is calculated greater than the required strength for the passage of the crane, which confirms the safety for the passage of the crane.

제한 중량을 초과하는 분리 불가능한 기중기 차량의 통행에 대한 교량 안전성 평가를 위한 합리적인 방법의 개발이 필요하다. 이 연구에서는 최근 도입된 신뢰도기반 도로교설계기준 한계상태설계법 개발에 적용된 동일한 방법을 기중기 차량 활하중계수 보정에 적용한다. 콘크리트 교량을 대상으로 구조해석을 수행하여 기존 설계기준에 의한 소요강도와 현행 설계기준 및 AASHTO LRFD에 의한 소요강도를 비교하고 실교량 단면의 설계강도를 비교하였다. 비계수 활하중 효과를 비교하면, 기중기 활하중이 현행 설계기준의 활하중과 기존 설계기준의 활하중보다 더 컸다. 보정된 활하중계수를 적용한 소요강도를 비교하면, 기존 설계기준의 소요강도가 가장 크고 기중기 활하중 효과는 현행 설계기준의 소요강도와 비슷하다. 기중기 통행 후보 노선 상의 실교량에 대한 안전성 평가 결과는 모든 교량에 대하여 설계기준에서 요구하는 목표신뢰도지수와 동일한 신뢰도를 확보하고 있으며, 실교량 강도는 기중기 통행에 필요한 소요강도보다 커서 대상 기중기 통행에 대한 안전성이 확인된다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport (2018), Bridge Design Code : KDS 24 12 21 Bridge Design Load, Korea Construction Standards Center.
  2. Ministry of Land, Transport and Maritime Affairs (2010), Highway Bridge Design Code, MLTM.
  3. American Association of State Highway and Transportation Officials (AASHTO) (2014), AASHTO LRFD Bridge Design Specifications, AASHTO, Washington, D.C.
  4. American Association of State Highway and Transportation Officials (AASHTO) (2003), Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C.
  5. Moses, F. (2001), Calibration of Load Factors for LRFR Bridge Evaluation, NCHRP Report 454, Transportation Research Board, Washington, D.C., 4-10.
  6. Nowak, A. S. (1999), Calibration of LRFD Bridge Design Code, NCHRP Report 368, Transportation Research Board, Washington, D.C., 9-28.
  7. Sivakumar, B., and Ghosn, M. (2011), Recalibration of LRFR Live Load Factors in the AASHTO Manual for Bridge Evaluation, NCHRP, New York, 40-57.
  8. American Association of State Highway and Transportation Officials (AASHTO) (2008, 2018), The Manual of Bridge Evaluations, AASHTO, Washington, D.C., 6:15-37.
  9. Ministry of Land, Infrastructure and Transport (2020), Operation Permit System for Limited Vehicle : https://www.ospermit.go.kr/.
  10. Seoul Metropolitan Government (2003). Development of Heavy Vehicle Routes and System, 133-196
  11. Korea Infrastructure Safety Corporation (2019), Detailed Guidelines for Safety and Maintenance of Facilities (Performance evaluation), KISC, 87-91.
  12. MIDAS IT (2020), MIDAS/CIVIL.
  13. Standards Australia (2017). Australian Standard - Bridge Design Part 7: Bridge Assessment (AS5100.7:2017), New South Wales, Australia, 22.
  14. Paik, I., Hwang, E, and Shin, S. (2009), Reliability Analysis of Concrete Bridges Designed with Material and Member Resistance Factors, Computers & Concrete, Techno-Press, 6(1), 59-78. https://doi.org/10.12989/cac.2009.6.1.059
  15. Nowak, A. S. and Collins, K. R. (2000), Reliability of Structures, McGraw-Hill., 120-129.