• Title/Summary/Keyword: litter decomposition

Search Result 105, Processing Time 0.031 seconds

Nutrient Dynamics in Decomposing Leaf Litter and Litter Production at the Long-Term Ecological Research Site in Mt. Gyebangsan (계방산 장기생태조사지의 낙엽 생산량 및 낙엽 분해에 따른 양분 동태)

  • Lee, Im-Kyun;Lim, Jong-Hwan;Kim, Choon-Sig;Kim, Young-Kul
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.585-591
    • /
    • 2006
  • We measured the litterfall quantity and investigated the nutrient dynamics in decomposing litter for three years at the LTER sites installed in a deciduous broadleaf natural forest in Mt. Gyebangsan, South Korea. Litterfall production was significantly different among the sampling dates, whereas it was not significantly different among the years. The total annual mean litterfall production for three years was 6,593 kg $ha^{-1}$ $yr^{-1}$ and leaf litter accounted for 82.6% of the litterfall. The leaf litter quantity was highest in Quercus mongolia, followed by leaf of other species, Betula schmidtii, Kaplopanax pictus, Acer pseudo-sieboldianum, etc., which are dominant tree species in the site. The mass loss from the decomposition of leaf litter was fastest in Cortinus controversa (100%), followed by A. preudo-sieboldianum, K. pictus, and B. schmidtii. 100% of litter for C. controversa, 96.1% for A. pseudo-sieboldianum, 92.8% for K. pictus decomposed, while 66.2% of litter for Q. mongolia decayed for 1,003 days. The lower rate of the mass loss in the litter of Q. mongolia may be attributed to the difference in substrate quality, such as lower nutrient concentrations compared with those of other tree species. The concentrations of N, P, and Ca for five litter types increased over time, while the concentrations of K and Mg decreased over time. Compared with the nutrients in the litter of Q. mongolia, the nutrients (N, P, K, Ca, Mg) in the litter of other species, C. controversa, A. pseudo-sieboldianum, and K. pictus, were released more rapidly. The results showed that the mass loss and the nutrient dynamics in the litter are variable depending on the tree species even in the same site conditions.

Decay rate and Nutrient Dynamics during Litter Decomposition of Pinus rigida and Pinus koraiensis (리기다소나무와 잣나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화)

  • Won, Ho-yeon;Lee, Young-sang;Jo, Soo-un;Lee, Il-hwan;Jin, Sun-deok;Hwang, So-young
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.557-565
    • /
    • 2018
  • We examined the nutrient dynamics during the leaf litter decomposition rate and process of Pinus rigida and Pinus koraiensis in Gongju for 21 months from December 2014 to September 2016 as a part of National Long-Term Ecological Research Program in Korea. The remaining weight rate of P. rigida and P. koraiensis leaf litter was $58.27{\pm}4.13$ and $54.08{\pm}4.32%$, respectively, indicating that the P. koraiensis leaf litter decomposed faster than P. rigida leaf litter. The decay constant (k) of P. rigida leaf litter and P.koraiensis leaf litter after 21 months was 0.95 and 1.08, respectively, indicating that P. koraiensis leaf litter decayed faster than P. rigida leaf litter probably due to the difference of nitrogen concentration between the two. The C/N ratio of P. rigida and P. koraiensis leaf litter was 64.4 and 40.6, respectively, initially, and then decreased to 41.0 and 18.9, respectively, after 21 months. The C/P ratio of P. rigida and P. koraiensis leaf litter was 529.8 and 236.5, respectively, and then decreased to 384.1, 205.2, respectively, after 21 months. The contents of N, P, K, Ca, and Mg were 6.78, 0.83, 2.84, 0.99, and 2.59 mg/g, respectively, in the P. rigida leaf litter and 10.90, 1.87, 5.82, 4.79, and 2.00 mg/g, respectively, in the P. koraiensis leaf litter, indicating that the elements except the magnesium showed higher contents in P. koraiensis. After 21 months elapsed, remaining N, P, K, Ca, and Mg was 88.4, 77.6, 26.7, 50.5 and 44.5%, respectively, in decomposing P. rigida, and 114.4, 61.3, 7.6, 115.2 and 72.0%, respectively, decomposing P. koraiensis leaf litter.

Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan (점봉산 신갈나무 낙엽의 분해율과 미기상요인과의 상관관계 분석)

  • Ho-Yeon Won;Young-Sang Lee;Jae-Seok Lee;Il-Hwan Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.455-463
    • /
    • 2022
  • To understand functional changes of forest ecosystems due to climate change, correlation between decomposition rate of leaf litter, an important function of forest ecosystems, and microclimatic factors was analyzed. After 48 months elapsed, percent remaining weight of Quercus mongolica leaf litter was 27.1% in the east aspect and 37.0% in the west aspects. Decay constant of Q. mongolica leaf litter was 0.33 in the east aspect and 0.25 in the west aspect after 48 months elapsed. Initial C/N ratio of Q. mongolica leaf litter was 38.5. After 48 months elapsed, C/N ratio of decomposing Q. mongolica leaf litter decreased to 13.43 in the east aspect and 16.72 in the west aspect. Average air temperature and soil temperature during the investigation period of the research site were 8.2±9.0 and 9.1±9.3 in the east and 8.5±7.4 and 9.3±7.3℃ in the west aspect, respectively, with the west aspect showing higher air and soil temperatures. Soil moisture showed no significant difference between east and west aspects (average soil moisture: 19.4±11.0% vs. 20.5±5.7%). However, as a result of analyzing the correlation between decomposition rate and microclimatic factors, it was found that the decomposition rate and soil moisture has a positive correlation(r=0.426) in the east aspect but not in the west aspect. Our study shows that the correlation between decomposition rate and microclimatic factors can be significantly different depending on the direction of the aspect.

Changes of Inorganic Nitrogen and CO2 Evolution Rate on the Decomposition Process of Korean White Pine Needles (잣나무엽(葉)의 초기(初期) 분해과정(分解過程)에 있어서 무기태(無機態) 질소(窒素) 및 CO2 방출속도(放出速度)의 변화(變化))

  • Yi, Myong Jong;Han, Sang Sup;Kim, Jeong Je
    • Journal of Korean Society of Forest Science
    • /
    • v.69 no.1
    • /
    • pp.13-18
    • /
    • 1985
  • Forest soils mixed with organic matters (green needle, flesh needle litter and needle litter in F layer of Pinus koraiensis, and green leaf of Quercus dentata and Q. variabilis) were incubated under a constant $30^{\circ}C({\pm}1)$ for 53 days to measure the changes of inorganic nitrogen and $CO_2$ evolution rate. The results obtained were summarized as follows; 1) In the early incubation period the amounts of total inorganic nitrogen in soils by mixture of organic matters decreased rapidly because of immobilization by microbial uptake, and thereafter their amounts increased with further incubation. 2) The rate of immobilization of organic nitrogen in mixed organic matters was the highest in green needle among green needle, flesh needle litter and needle litter in F layer of P. koraiensis, but lower than that of green leaf of Q. variabilis and Q. dentata. 3) The rates of $CO_2$ evolution from soils mixed with organic matters increased sharply in the early time, and then decreased slowly with increasing time. The order of the $CO_2$ evolution rate was green leaf of Q. variabilis > green leaf of Q. dentata > green needle of P. koraiensis > flesh needle litter of P. koraiensis > needle litter of P. koraiensis in F layer from the largest to the least. 4) Nitrate nitrogen concentrations showed a tendency to increase throughout incubation time, so that their concentrations after 53 days were higher than that of ammonium nitrogen.

  • PDF

The Balance of the Storage and Decay of DNA by Producers and Decomposers in the Ecosystem of a Zoysia japonica Grassland (잔디초지 생태계에 있어서 생산자와 소비자에 의한 DNA의 축적과 분해의 평형)

  • 장남기;김정석;이병설;강경미
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.275-283
    • /
    • 1996
  • An investigation was performed to reveal the relation between the storage and decomposition of the titter DNA of a Zoysia japonica grassland on Mt. Kwanak. The loss constant k of litters was 0.167. The times required for the decomposition of half, 95% and 99% of accumulated DNA on the grassland floor were 3.8, 16.6 and 27.6, respectively. The amount of DNA which is turned to living organism in the ecosystem is higher than that of crude protein. In the case of crude protein, the decay constant k was 0.181. The times needed for the decomposition of half, 95% and 99% of accumulated crude protein on the Z. japonica grassland floor were 3.8, 16.6 and 27.6 years, respectively. Key words: Zoysia japonica, Mt. Kwanak, Litter DNA, Crude protein, Decomposition, Accumulation.

  • PDF

A Study on the Production and Decomposition of Litters Related to Altitude (한라산, 소백산 및 태백산의 고도에 따른 낙엽의 생산과 분해에 관한 연구)

  • Chang, Nam Kee;Hi Chung Kwon
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.109-118
    • /
    • 1987
  • The production and decomposition rates of litters were studied in three mountains, Mt. Halla, Mt. So-back and Mt. Tae-back. The amounts of N, P, K, Ca and Na in the soils were measured and the relationships between the mineral nutrients and decay rates were reserched, The annual litter production was the most as $1, 077.3g/m^2$ and the least as $248.0g/m^2$ in a stand of Quercus acutissima at 820m of the Mt. So-back and at 1, 350m of the Mt. So-back among the study sites, respectively. The decay rates of litter was the highest as k=0.448 and the lowest as k=0.082 in a stand of Q. acutissima at 820m of the Mt. So-back and at 1, 450m of the Mt. Tae-back at 1, 450m of the Mt. Tae-back among the study sites. The higher altitude was, the slower the decay rates were. The annual contents of mineral nutrient and their amounts inputted into the forest soil were proportional to the decay rate of organic metters.

  • PDF

Studies on microbial population affecting the decomposition of fir litter. (전나무낙엽의 분해에 따른 Microbial population의 변화에 관한 연구)

  • Jang, Nam Gi;Im, Yeong Deuk
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.92-92
    • /
    • 1968
  • 1) The aim of present investigation is to elucidate the relation of the balance of the production and decomposition of the fir litter. in Kwangnung plantation stands. 2) The decay constant, K, of litters was 0. 185 for the fir stand at Kwangnung. 3) The mode for the accumulation of organic carbon ($C_a$) is $c_a$= $610(1-e^{-0.185t})$), and for the decay of organic carbon (C) C = $610(1-e^{-0.185t})$. 4) The time required for the decay of half of the accumulated organic carbon in the fir stand is 3. 74 years and for 99% of elimination 27.02 years. 5) The litters of Abies holophylla killed by heat and washed with alcohol-benzol, with hot water, or with both alcohol-benzol and hot water were incubated after inoculated with suspension of firwood soil. Plate counts were made of fungi and bacteria from time to time. 6) Removal of the alcohol-benzol soluble substance stimulates at the beginning of the decay the growth of fungi and also of bacteria. 7) Removal of the water soluble fraction is detrimental to the growth of fungi in particular. 8) The distribution of soil microbial population is higher in both F and H horizon of the fir plantation soil in Kwangnung. However, the number of soil microorganisms decreases with the depth in forest soil.

Studies on microbial population affecting the decomposition of fir litter. (전나무낙엽의 분해에 따른 Microbial population의 변화에 관한 연구)

  • 장남기;임영득
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.93-99
    • /
    • 1968
  • 1) The aim of present investigation is to elucidate the relation of the balance of the production and decomposition of the fir litter. in Kwangnung plantation stands. 2) The decay constant, K, of litters was 0. 185 for the fir stand at Kwangnung. 3) The mode for the accumulation of organic carbon ($C_a$) is $c_a$= $610(1-e^{-0.185t})$), and for the decay of organic carbon (C) C = $610(1-e^{-0.185t})$. 4) The time required for the decay of half of the accumulated organic carbon in the fir stand is 3. 74 years and for 99% of elimination 27.02 years. 5) The litters of Abies holophylla killed by heat and washed with alcohol-benzol, with hot water, or with both alcohol-benzol and hot water were incubated after inoculated with suspension of firwood soil. Plate counts were made of fungi and bacteria from time to time. 6) Removal of the alcohol-benzol soluble substance stimulates at the beginning of the decay the growth of fungi and also of bacteria. 7) Removal of the water soluble fraction is detrimental to the growth of fungi in particular. 8) The distribution of soil microbial population is higher in both F and H horizon of the fir plantation soil in Kwangnung. However, the number of soil microorganisms decreases with the depth in forest soil.

  • PDF

Monoterpenoids Concentration during Decomposition and Their Effect on Polysphondylium violaceum

  • Kim, Jong-Hee;Hwang, Ji-Young;Jo, Gyu-Gap;Kang, Ho-Nam
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.337-342
    • /
    • 2006
  • The total monoterpenoid content of the pine litter layer and the availability of these compounds as inhibitors/stimulators on Polysphondylium violaceum of cellular slime molds were investigated. In order to determine the several monoterpenoids in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 3 pine species (Pinus densiflora, P. thunbergii, P. rigida) by litter bag method. Total monoterpenoid content was highest in the fresh needles, but also remained relatively high in senescent needles. The effect of monoterpenoids identified from Pinus plants on the growth of P. violaceum was studied. We tested four concentrations (1, 0.1, 0.01, and $0.001\;{\mu}g/{\mu}L$) of each compound by using a disk volatilization technique. Each compound was treated after germination of spores of P. violaceum. All of the compounds at $1\;{\mu}g/{\mu}L$ concentration had a very strong inhibitory effect on cell growth of P. violaceum. Fenchone at all concentrations, myrcene, verbenone, bornyl acetate, and limonene at low concentrations stimulated the growth of P. violaceum. These results suggest that inhibitory or enhancing effects of selected monoterpenoids depend upon the concentration of the individual compound.