• Title/Summary/Keyword: lithosphere

Search Result 52, Processing Time 0.02 seconds

A Geochemical Indicator in Exploration for the Kalaymyo Chromitite Deposit, Myanmar (미얀마 깔레이미요 크롬철석광상 탐사의 지구화학적 인자)

  • Park, Jung-Woo;Park, Gyuseung;Heo, Chul-Ho;Kim, Jihyuk
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.423-433
    • /
    • 2017
  • Korea Institute of Geoscience and Mineral Resources and Department of Geological Survey and Mineral Exploration in Myanmar have explored the Kalaymyo chromitite deposit, Myanmar since 2013. It is now necessary to find a geochemical indicator for efficient mineral exploration in the future and building a 3D geological model for this ore deposit. Mantle podiform chromitite is a major type of Cr ore in this region, which is considered to be formed by mantle-melt interaction beneath the mantle-crust boundary of oceanic lithosphere. In this study we measured major element composition of spinels in harzburgite, dunite and chromitite, and examined the hypothesis that spinel Cr#(molar Cr/(Cr+Al)${\times}$100) can be used as a geochemical indicator in exploration for the Kalaymyo chromitite. The results show that there is a clear correlation between spinel Cr# and distribution of chromitite. The spinel Cr# of harzburgite increases with decreasing the distance from the chromitite bodies. The spinel composition is also closely associated with texture and occurrence of spinels. The high Cr# spinels (30-48) are subhedral to euhedral and enclosed by olivine whereas the low Cr# spinels (16-27) are anhedral and commonly associated with pyroxenes. Often the low Cr# spinels show symplectite intergrowths with pyroxenes, indicating their residual nature. These petrological and geochemical results suggest that the high Cr# spinels have resulted from mantle-melt interaction. We suggest that spinel Cr# can be used as a geochemical indicator for Cr ore exploration and as one of critical factors in 3D geological model in the Kalaymyo chromitite deposit.

Petrology and Geochemistry of Miocene Alkaline Basalt (Huangsongpu Basalt) from the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암(황송푸 현무암)의 암석학적/지화학적 특성)

  • Kim, Eunju;Hirata, Chiharu;Jeong, Hoon Young;Kil, Youngwoo;Yang, Kyounghee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.307-324
    • /
    • 2020
  • Major and trace elements, and Sr, Nd, isotopic composition analysis have been carried out on the Miocene basalt (Huangsongpu basalt, 20 Ma) 25 km to northeast from the Mt. Baekdu. The basalt has Na2O+K2O=3.5~4.7 wt.%, and MgO=9.9~11.1 wt.%, containing Mg-rich olivine (Mg#=75~86), clinopyroxene (Mg#=72~85) and Ca-rich plagioclase micro-phenocrysts. These data suggest that the basalt belongs to the alkaline magma series with a primitive nature, crystallized at a near-liquidus. The basalt is also characterized by high Cr (394~479 ppm) and Ni (389~519 ppm) contents, Nb-Ta enrichment anomalies and OIB-like trace elements patterns, displaying identical signatures to those of typical intraplate magmas. The rare earth element (REE) patterns of the basalt and high (Gd/Yb)sample/(Gd/Yb)PM ratio (=2.8~3.5) suggest the parental magma was derived from relatively low-degree (3~5%) partial melting of garnet peridotite. The 143Nd/144Nd and 87Sr/86Sr composition of the basalt are higher than those of BSE. The high 87Sr/86Sr (= ~0.7058) ratio of the basalt indicates a contribution of recycled ancient oceanic crust or continental crust on the Pacific slab suggesting that the Huangsongpu basalt was generated from metasomatized mantle.