• 제목/요약/키워드: lithium-nickel-cobalt oxide

검색결과 11건 처리시간 0.019초

$LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성 (Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell)

  • 김상필;조정수;박정후;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

Hydrogen isotope exchange behavior of protonated lithium metal compounds

  • Park, Chan Woo;Kim, Sung-Wook;Sihn, Youngho;Yang, Hee-Man;Kim, Ilgook;Lee, Kwang Se;Roh, Changhyun;Yoon, In-Ho
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2570-2575
    • /
    • 2021
  • The exchange behaviors of hydrogen isotopes between protonated lithium metal compounds and deuterated water or tritiated water were investigated. The various protonated lithium metal compounds were prepared by acid treatment of lithium metal compounds with different crystal structures and metal compositions. The protonated lithium metal compounds could more effectively reduce the deuterium concentration in water compared with the corresponding pristine lithium metal compounds. The H+ in the protonated lithium metal compounds was speculated to be more readily exchangeable with hydrons in the aqueous solution compared with Li+ in the pristine lithium metal compounds, and the exchanged heavier isotopes were speculated to be more stably retained in the crystal structure compared with the light protons. When the tritiated water (157.7 kBq/kg) was reacted with the protonated lithium metal compounds, the protonated lithium manganese nickel cobalt oxide was found to adsorb and retain twice as much tritium (163.9 Bq/g) as the protonated lithium manganese oxide (69.9 Bq/g) and the protonated lithium cobalt oxide (75.1 Bq/g) in the equilibrium state.

Fabrication of Lithium Nickel Cobaltate Thin-film for the Cathode Material of Microbattery

  • Kim, Duksu;Kim, Mun-Kyu;Son, Jong-Tae;Kim, Ho-Gi
    • 한국세라믹학회지
    • /
    • 제38권8호
    • /
    • pp.683-686
    • /
    • 2001
  • Electrochemically active lithium nickel cobalt oxide thin-film was not fabricated until now. The thin-film was deposited by RF magnetron sputtering at room temperature, and its initial phase was amorphous. By varying deposition condition, the different characteristics of thin-film were achieved. Using electrochemical analyses, the relationship between physical and electrochemical characteristics was identified. Crystallized thin-film by RTA (Rapid Thermal Annealing) was shown a good capacity and cycle property.

  • PDF

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

A STUDY ON THE RECOVERY OF LITHIUM AND Ni/Co OXIDE FROM CATHODE ACTIVE POWDER OF END-OF-LIFE NCA(LiNiCoAlO2) BATTERY

  • SHUN-MYUNG SHIN;DONG-JU SHIN;SUNG-HO JOO;JEI-PIL WANG
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.481-485
    • /
    • 2019
  • This study was attempted to study for recovery of Li as Li2CO3 from cathode active material, especially NCA (LiNiCoAlO2), recovered from spent lithium ion batteries. This consists of two major processes, carbonation using CO2 and water leaching. Carbonation using CO2 was performed at 600℃, 700℃ and 800℃, and NCA (LiNiCoAlO2) was phase-separated into Li2CO3, NiO and CoO. The water leaching process using the differences in solubility was performed to obtain the optimum conditions by using the washing time and the ratio of the sample to the distilled water as variables. As a result, NCA (LiNiCoAlO2) was phase-separated into Li2CO3 and NiO, CoO at 700℃, and Li2CO3 in water was recovered through vacuum filtration after 1 hour at a 1:30 weight ratio of the powder and distilled water. Finally, Li2CO3 containing Li of more than 98 wt.% was recovered.

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Li(NCM)O2계(係) 이차전지(二次電池) 공정(工程)스크랩의 탄소환원처리(炭素還元處理)에 의한 리튬회수(回收) 및 NCM 분말(粉末)의 침출거동(浸出擧動) (Recovery of Lithium and Leaching Behavior of NCM Powder by Carbon Reductive Treatment from Li(NCM)O2 System Secondary Battery Scraps)

  • 김대원;장성태
    • 자원리싸이클링
    • /
    • 제22권4호
    • /
    • pp.62-69
    • /
    • 2013
  • $Li(NCM)O_2$계 폐리튬전지 공정 스크랩의 재활용 연구의 일환으로서 리튬화합물의 회수와 NCM전구체를 제조하기 위한 침출거동에 대하여 살펴보았다. 우선 탄소를 이용하여 층상 구조의 NCM계 산화물 분말을 분해시켰으며, $600^{\circ}C$ 이상의 탄소반응으로 리튬은 탄산리튬으로 변화시켰다. 탄산리튬은 수세 후 농축과정을 거쳐 순도 99% 이상의 탄산리튬 분말로 회수하였다. 그리고 탄소에 의한 환원 반응율은 $800^{\circ}C$에서 약 88%을 나타내었으며, 탄소환원 처리 후 분말에 대한 황산 침출 결과, 2M 이상의 황산농도에서 코발트, 니켈, 망간의 침출율은 99% 이상이었다.

A Surfactant-based Method for Carbon Coating of LiNi0.8Co0.15Al0.05O2 Cathode in Li Ion Batteries

  • Chung, Young-Min;Ryu, Seong-Hyeon;Ju, Jeong-Hun;Bak, Yu-Rim;Hwang, Moon-Jin;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2304-2308
    • /
    • 2010
  • A $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCAO/C) active material composite cathode was coated with carbon. The conductive carbon coating was obtained by addition of surfactant during synthesis. The addition of surfactant led to the formation of an amorphous carbon coating layer on the pristine LNCAO surface. The layer of carbon coating was clearly detected by FE-TEM analysis. In electrochemical performance, although the LNCAO/C showed similar capacity at low C-rate conditions, the rate capability was improved by the form of the carbon coating at high current discharge state. After 40 cycles of charge-discharge processes, the capacity retention of LNCAO/C was better than that of LNCAO. The carbon coating is effectively protected the surface structure of the pristine LNCAO during Li insertion-extraction.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.