• Title/Summary/Keyword: lithium salt

Search Result 147, Processing Time 0.029 seconds

Quantitative Analysis of Trace Metals in Lithium Molten Salt by ICP-AES (ICP-AES를 이용한 리튬 용융염내의 미량 금속성분원소 정량에 관한 연구)

  • Kim, Do-Yang;Pyo, Hyung-Yeal;Park, Yong-Joon;Park, Yang-Soon;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • The quantitative analysis of various trace metals including fission products in lithium molten salts has been performed using a inductively coupled plasma atomic emission spectrometer (ICP-AES). The spectral interferences of lithium content, 500, 1,000 and 2,000 mg/L, in the sample solution were investigated using an optimum wavelength for the respective metal species. As a result, the line intensities for Y, Nd, Sr, and La had no influences from the lithium content up to 2,000 mg/L, while Mo, Ba, Ru, Pd, Rh, Zr and Ce showed spectral interferences of 10% to 50%. The group separation of metals from lithium in the molten salts solution was carried out by adding ammonia water into the solution. The recovery of Ru, Y, Rh, Zr, Nd, Ce, La and Eu was found to be over 90%, while Mo, Ba, Pd, and Sr provided low recovery percentages.

  • PDF

Polymer Electrolyte Membranes for Flexible Electrochromic Device (플렉시블 전기변색 소자를 위한 고분자 전해질 멤브레인)

  • Lee, Ji-Hyeon;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.333-341
    • /
    • 2020
  • In this study, the optimum design conditions of a polymer electrolyte membrane for application to a flexible electrochromic device (ECD) were tried to be derived. Polyvinyl butyral (PVB) with excellent adhesive property and transparency was selected as the base polymer for the preparation of the electrolyte membrane, and adipate-based polymer was used as the plasticizer. As a result, it was confirmed that the most influential factors on the ECD performance were the ionic conductivity and permeability of the electrolyte membrane. In addition, it was found that the factor has a close relationship with the dissociation property of the lithium salt. Overall, the optimal ECD performance was achieved when LiTFSI salt having a large anion size among various lithium salts was dissolved in a content of about 25 wt.%.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

Effect of Lithium Chloride on the Borane Reduction of Organic Compound (보란-염화리튬에 의한 유기화합물의 환원반응)

  • Nung Min Yun;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1978
  • The effect of lithium chloride on the borane reduction of organic compounds was studied for three ketones, seven acid derivatives, three epoxides and cyclohexene in tetrahydrofuran at $0^{\circ}$. When compared with borane itself, borane-lithium chloride system enhanced the rates of reductions markedly of 2-heptanone, acetophenone, benzoyl chloride, phthalic anhydride, and three epoxides, whereas the reductions of benzophenone, four esters and cyclohexene showed little or no effect. $BH_3$-LiCl (1 : 0.1) reduced styrene oxide in 2 hr at $0^{\circ}$ to give 94.2 % yield of alcohols, 1-to 2-phenylethanol ratio being 60.8 to 39.2. And in the reduction of cyclohexene oxide, $BH_3$-LiCl (1 : 0.1) gave a quantitative yield of cyclohexanol in 2 hr at $0{\circ}$, however $BH_3$-LiCl (1 : 1) gave 58 % cyclohexanol and 42 % 2-chlorocyclohexanol. In the reduction of cyclohexene oxide, lithium nitrate showed no rate enhancement even when the salt was added in large excess. A formation of lithium chloroborohydride in the$BH_3$-LiCl system is suggested.

  • PDF

Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells (Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상)

  • Shin, Won-Kyung;Park, Se-Mi;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2014
  • In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Electrical Characterization of Organo Sulfur Compound-Polyphenylenediamine Positive Electrode in Lithium Battery (유기황화합물-Polyphenylenediamine리튬전지용 정극의 전기적특성)

  • 박수길;박종은;손원근;김상욱;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.261-264
    • /
    • 1997
  • Polyphenylenediamine(PPD)film was prepared with organo sulfur compond (2-aminothiophenol, 1,2-ethanedithiol, and 2-aminoethaneethiol etc.) adding lithium salt to increase the electrical conductivity of the polymer surface. The molecular structure of conductive polymer synthesized were examined and discussed by using SEM, FT-IR, NMR etc. The elecrical conductivity messurement were carried out with four-probe method at dry box of He and $N_2$atmosphere. The typical value of successful electrical conductivity was 1.2$\times$10$^1$S/cm at room temperature.

  • PDF

Characterization of a Cross-linked Polymer Electrolyte Prepared from Oligo(ethylene glycol) methacrylates-Acrylonitrile

  • Lee, Chang-Ryoul;Hyun, Seok-Hee;Lee, Suk-Kee;Kim, Woo-Sik;Moon, Seong-In;Jin, Bong-Soo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.292-295
    • /
    • 2001
  • A cross-linked solid polymer electrolyte was prepared by copolymerizing photochemically acrylonitrile (AN), oligo(ethylene glycol ethyl ether) methacrylate, oligo(ethylene glycol) dimethacrylate in the presence of lithium perchlorate as a lithium salt, ethylene carbonate-propylene carbonate as a mixed plasticizer, and poly(ethylene oxide) as a polymer matrix. The maximum ionic conductivity of the polymer electrolyte was 2.35$\times$10$\^$-3/ S/cm. The interface resistance of the polymer electrolyte was very low compared to that of the polymer electrolyte without AN. The former electrolyte was stable up to 4.3 V and the Ah efficiency was nearly 100% during the charge-discharge cycle.

  • PDF