Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.333

Polymer Electrolyte Membranes for Flexible Electrochromic Device  

Lee, Ji-Hyeon (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.30, no.5, 2020 , pp. 333-341 More about this Journal
Abstract
In this study, the optimum design conditions of a polymer electrolyte membrane for application to a flexible electrochromic device (ECD) were tried to be derived. Polyvinyl butyral (PVB) with excellent adhesive property and transparency was selected as the base polymer for the preparation of the electrolyte membrane, and adipate-based polymer was used as the plasticizer. As a result, it was confirmed that the most influential factors on the ECD performance were the ionic conductivity and permeability of the electrolyte membrane. In addition, it was found that the factor has a close relationship with the dissociation property of the lithium salt. Overall, the optimal ECD performance was achieved when LiTFSI salt having a large anion size among various lithium salts was dissolved in a content of about 25 wt.%.
Keywords
polymer electrolyte membrane; flexible electrochromic device; polyvinyl butyral; adhesive property; transparency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Wu, Y. Wu, C. Zhang, H. Niu, L. Lei, C. Qin, C. Wang, X. Baia, and W. Wang, "Polyurethanes prepared from isocyanates containing triphenylamine derivatives optical, electrochemical, electrochromic and memory properties", RSC Adv., 5, 58843 (2015).   DOI
2 R. Leones, R. C. Sabadinic, F. C. Sentaninc, J. M. S. S. Esperança, A. Pawlicka, and M. M. Silva, "Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes", Sol. Energy Mater Sol. Cells, 169, 98 (2017).   DOI
3 M. Fernandes, V. Freitas, S. Pereira, R. Leones, M. M. Silva, L. D. Carlos, E. Fortunato, R. A. S. Ferreira, R. Rego, and V. Z. Bermudez, "Luminescent electrochromic devices for smart windows of energy-efficient Buildings", Energies, 11, 3513 (2018).   DOI
4 D. H. Choi, M. H. Son, T. H. Im, S. H. Ahn, and C. S. Lee, "Crack-free fabrication of prussian blue-based blending film for the dramatic enhancement of dual electrochromic device", Ceram. Int., 46, 21008 (2020).   DOI
5 E. Eren, M. F. Aydin, and A. U. Oksuz, "A practical approach for generation of $WO_3$-based flexible electrochromic devices", J. Solid State Electrochem., 24, 1057 (2020).   DOI
6 D. Zhou, D. Xie, X. Xia, X. Wang, C. Gu, and J. Tu, "All-solid-state electrochromic devices based on WO3$\parallel$NiO films: material developments and future applications", Sci. China Chem., 60, 3 (2017).   DOI
7 T. Winie, A. K. Arof, and S. Thomas, "Polymer electrolytes: characterization techniques and energy applications", pp. 365-389, John Wiley and Sons, New York, NY (2019).
8 J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie, and L. Deng, "A high-performance electrochromic device assembled with hexagonal $WO_3$ and NiO/PB composite nanosheet electrodes towards energy storage smart window", Sol. Energy Mater Sol. Cells., 207, 110337 (2020).   DOI
9 A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects", Energy Technol., 6, 33 (2018).   DOI
10 A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: The prerequisites, challenges and prospects", Energy Technol., 6, 33 (2017).   DOI
11 R. H. Lambeth and A. Rizvi, "Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers", Polymer, 183, 121881 (2019).   DOI
12 S. Guan, W. Wang, J. Zheng, and C. Xu, "A method to achieve full incorporation of PMMA-based gel electrolyte in fiber-structured PVB for solid-state electrochromic device fabrication", Electrochim. Acta, 354, 136702 (2020).   DOI
13 J. Comyn, "Handbook of adhesives and sealants", pp. 1-50, Elsevier, Amsterdam (2006).
14 S. Ebnesajjad, "Handbook of adhesives and surface preparation", pp. 137-183, Elsevier, Amsterdam (2011).
15 X. Li, J. Ke, J. Wang, M. Kang, Y. Zhao, Q. Li, and C. Liang, "$CO_2$ derived amino-alcohol compounds for preparation of polyurethane adhesives", J. $CO_2$ Util., 31, 198 (2019).
16 Y. Li and S. Ren, "Building decorative materials", pp. 325-341, Elsevier, Amsterdam (2011).
17 O. Olabisi and K. Adewale, "Handbook of thermoplastics", pp. 90-137, CRC Press, Boca Raton, FL (2015).
18 E. J. Grojzdek, M. Kunaver, D. Kukanja, and D. Moder, "Renewable (waste) material based polyesters as plasticizers for adhesives", Int. J. Adhes. Adhes., 46, 56 (2013).   DOI
19 N. B. Halima, "Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation", RSC Adv., 6, 39823 (2016).   DOI
20 E. Corroyer, M. C. B. Salon, D. Chaussy, S. Wery, and M. N. Belgacem, "Characterization of commercial polyvinylbutyrals", Int. J. Polym. Anal. Charact., 18, 346 (2013).   DOI
21 F. N. Nguyen and J. C. Berg, "The effect of vinyl alcohol content on adhesion performance in poly(vinyl butyral)/glass systems", J. Adhes. Sci. Technol., 18, 1011 (2004).   DOI
22 G. P. T. Ganesh, and B. Deb, "Designing an all-solid- state tungsten oxide based electrochromic switch with a superior cycling efficiency", Adv. Mater. In terfaces, 4, 1700124 (2017).   DOI
23 K.-K. Lee, K. Park, H. Lee, Y. Noh, D. Kossowska, K. Kwak, and M. Cho, "Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery", Nat. Commun., 8, 14658 (2017).   DOI
24 M. Ue, "Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and ${\gamma}$-butyrolactone", J. Electrochem. Soc., 141, 3336 (1994).   DOI
25 A. Arya and A. L. Sharma, "Polymer electrolytes for lithium ion batteries: A critical study", Ionics, 23, 497 (2017).   DOI