• Title/Summary/Keyword: lithium isotope

Search Result 12, Processing Time 0.019 seconds

Chromatographic Enrichment of Lithium Isotopes by Hydrous Manganese(IV) Oxide

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.503-506
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. One molar CH3COO Na solution was used as an eluent. The heavier isotope of lithium was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was calculated according to the method of Glueckauf from the elution curve and isotopic assays. The single stage separation factor of lithium isotope pair fractionation was 1.021.

Determination of Li by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.;Chung, Bag S.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.427-434
    • /
    • 1995
  • Inductively coupled plasma mass spectrometry combined with the isotope dilution method is used for the determination of lithium. The isotope dilution method is based on the addition of a known amount of enriched isotope (spike) to a sample. The analyte concentration is obtained by measuring the altered isotope ratio. The spike solution is calibrated through so called reverse isotope dilution with a primary standard. The spike calibration is an important step to minimize error in the determined concentration. It has been found essential to add spike to a sample and the primary standard so that the two isotope ratios should be as dose as possible. Since lithium is neither corrosive nor toxic, lithium is used as a chemical tracer in the nuclear power plants to measure feedwater flow rate. 99.9% $^7Li$ was injected into a feedwater line of an experimental system and sample were taken downstream to be spiked with 95% $^6Li$ for the isotope dilution measurements. Effects of uncertainties in the spike enrichment and isotope ratio measurement error at various spike-to-sample ratios are presented together with the flow rate measurement results in comparison with a vortex flow meter.

  • PDF

Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin

  • Jeon, Youn-Seok;Jang, Nak-Han;Kang, Byung-Moo;Jeon, Young-Shin;Kim, Chang-Suk;Choi, Ki-Young;Ryu, Hai-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • Tetraazamacrocyclic ion exchangers tethered to Merrifield peptide resin (DTDM, TTTM) were prepared and the ion exchange capacity of these was characterized. The isotope separation of lithium was determined using breakthrough method of column chromatography. The isotope separation coefficient was strongly dependent on the ligand structure by Glueckauf's theory. We found that the isotope separation coefficients were increased as the values of distribution coefficients were increased. In this experiment the lighter isotope, 6Li was enriched in the resin phase, while the heavier isotope, 7Li in the solution phase. The ion radius of lighter isotope, 6Li was shorter than the heavier isotope, 7Li. The hydration number of lithium ion with the same charge became small as mass number was decreased. Because 6Li was more strongly retained in the resin than 7Li, the isotopes of lithium were separated with subsequent enrichment in the resin phase.

Hydrogen isotope exchange behavior of protonated lithium metal compounds

  • Park, Chan Woo;Kim, Sung-Wook;Sihn, Youngho;Yang, Hee-Man;Kim, Ilgook;Lee, Kwang Se;Roh, Changhyun;Yoon, In-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2570-2575
    • /
    • 2021
  • The exchange behaviors of hydrogen isotopes between protonated lithium metal compounds and deuterated water or tritiated water were investigated. The various protonated lithium metal compounds were prepared by acid treatment of lithium metal compounds with different crystal structures and metal compositions. The protonated lithium metal compounds could more effectively reduce the deuterium concentration in water compared with the corresponding pristine lithium metal compounds. The H+ in the protonated lithium metal compounds was speculated to be more readily exchangeable with hydrons in the aqueous solution compared with Li+ in the pristine lithium metal compounds, and the exchanged heavier isotopes were speculated to be more stably retained in the crystal structure compared with the light protons. When the tritiated water (157.7 kBq/kg) was reacted with the protonated lithium metal compounds, the protonated lithium manganese nickel cobalt oxide was found to adsorb and retain twice as much tritium (163.9 Bq/g) as the protonated lithium manganese oxide (69.9 Bq/g) and the protonated lithium cobalt oxide (75.1 Bq/g) in the equilibrium state.

Chromatographic Separation of Lithum Isotopes by Hydrous Managanese(Ⅳ) Oxide (가수된 산화 망간(Ⅳ)에 의한 리튬 동위원소의 크로마토그래피적 분리)

  • Kim, Dong Won
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.219-222
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. The heavier lithium isotope was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assays. The separation factor of $^6Li^+$-$^7Li^+$ isotope pair fractionation was 1.018.

  • PDF

Enrichment of Lithium Isotope by Novel Ion Exchanger Containing Azacrown Ether as Anchor Group (앵커 그룹으로서 아자크라운 에테르를 포함한 새로운 이온교환체에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Lee, Nam-Soo;Jeong, Young Kyu;Ryu, Haiil;Kim, Chang Suk;Kim, Bong Gyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.231-234
    • /
    • 1998
  • Separation factor for $^6Li$ and $^7Li$ has been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane ($N_3O_3$) as an anchor group. The ion exchange capacity of the $N_3O_3$ ion exchanger was 2.0 meq/g dry resin. The lighter isotope, $^6Li$, is concentrated in the fluid phase, while the heavier isotope, $^7Li$, is enriched in the resin phase. By column chromatography [0.3 cm(I.D)${\times}$30 cm (height)] using 3.0 M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.018, i.e. $(^7Li/^6Li)_{resin}/(^7Li/^6Li)_{fluid}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Enrichment of Lithium Isotope by an Ion Exchange Resin Containing Azacrown Ether (아자크라운 에터를 포함한 이온교환수지에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Chung, Yongsoon;Choi, Ki Young;Lee, Yong-Ill;Jeong, Young Kyu;Jang, Young Hun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.403-407
    • /
    • 1997
  • Separation factor for $^6Li$ and $^7Li$ have been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane($N_3O_3$) as an anchor group. The lighter isotope, $^6Li$ is concentrated in the solution phase, while the heavior isotope, $^7Li$ is enriched in the resin phase. By Ccolumnl chromatography[0.9cm(I.D)${\times}$20cm(height)] using 2.0M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.009. i.e.$(^7Li/^6Li)_{resin}$/$(^7Li/^6Li)_{solution}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Separation of Lithium Isotopes by Porous Sulfonated Styrene-Divinylbenzene Copolymer Ionexchanger (Porous Sulfonated Styrene-Divinylbenzene Copolymer Ionexchanger 에 의한 리튬 동위원소의 분리)

  • Dong Won Kim;Ki Suck Maeng;Hae Young Song;Hae Il Ryu
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.189-193
    • /
    • 1983
  • The lithium isotopes separation experiments were carried out in hydrochloric acid with cation exchanger systerns. In these experiments were employed porous sulfonated styrene-divinylbenzene copolymer and Dowex 50w-x8 as cation exchanger. The contents of lithium of the fraction were determined with atomic absorption spectrophotometer. The relative mass of lithium isotopes of the fractions was analyzed on a mass spectrometer. The isotope separation factors of lithium were calculated from the isotope compositions of these eluted fractions. Separation factor for the system in hydrochloric acid and porous sulfonated styrene-divinylbenzene copolymer was found to be 1.0020, and for the case of system in hydrochloric acid and Dowex 50w-x8 was 1.0011${\om}$0.0002. From these results, we found that the separation factor for porous sulfonated styrene-divinylbenzene copolymer ionexchanger is larger than value of Dowex 50w-x8 ionexchanger.

  • PDF

Enrichment of Lithium Isotopes by Cation Exchange Chromatography (양이온 교환 크로마토그래피에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Kim, Chang Suck;Choi, Ki Young;Jeon, Young Shin;Jeong, Young Kyu;Park, Sung Up
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.201-204
    • /
    • 1994
  • Cation exchange column chromatography of lithium was carried out to investigate the lithium isotope separation in aqueous ion exchange system. A Pyrex glass column of $50cm{\times}6mm$ inner radius with a water jacket was used as the separation column in experiment. Upon column chromatography using hydrochloric and succinic acid mixtures as an elunent, single separation factor, ${\alpha}$, 1.0068 was obtained. From the experiment, it was found that $^6Li$ was enriched in the resin phase and $^7Li$ in the solution phase.

  • PDF

Studies on the Strained Ring Compound System (II) The Formation of Tetrahedrane in the Pyrolysis of 2-Butenedial Ditosylhydrazone (小員環 化合物에 關한 硏究 (II) 2-Butenedial Ditosylhydrazone 熱分解에 있어서의 Tetrahedrane 生成에 關하여)

  • Hak-Ki Lee
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.347-353
    • /
    • 1969
  • trans-1, 4-Dideutero-2-butenedial ditosylhydrazone has been synthesized to investigate the path of the acetylene formation in the pyrolysis of the dry lithium salt. Mass spectra showed that three isotope isomers of acetylene which might come from the strained ring compound, tricyclo[1, 1, 0, ] butane, were formed.

  • PDF