• Title/Summary/Keyword: lithium battery cathodes

Search Result 50, Processing Time 0.024 seconds

Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes

  • Nguyen, Cao Cuong;Bae, Young-San;Lee, Kyung-Ho;Song, Jin-Woo;Min, Jeong-Hye;Kim, Jong-Seon;Ko, Hyun-Seok;Paik, Younkee;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.384-388
    • /
    • 2013
  • Fluorine-doping on the $Li_{1+x}Mn_{1.9-x}Al_{0.1}O_4$ spinel cathode materials is found to alter crystal shape, and enhance initial interfacial reactivity and solid electrolyte interphase (SEI) formation, leading to improved initial coulombic efficiency in the voltage region of 3.3-4.3 V vs. Li/$Li^+$ in the room temperature electrolyte of 1 M $LiPF_6$/EC:EMC. SEM imaging reveals that the facetting on higher surface energy plane of (101) is additionally developed at the edges of an octahedron that is predominantly grown with the most thermodynamically stable (111) plane, which enhances interfacial reactivity. Fluorine-doping also increases the amount of interfacially reactive $Mn^{3+}$ on both bulk and surface for charge neutrality. Enhanced interfacial reactivity by fluorine-doping attributes instant formation of a stable SEI layer and improved initial cyclic efficiency. The data contribute to a basic understanding of the impacts of composition on material properties and cycling behavior of spinel-based cathode materials for lithium-ion batteries.

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

The Preparation Characteristic of Dimercaptan-Polyphenylenediamine Cathodes for Lithium Battery (리튬전지용 Dimercaptan-Polyphenylenediamine 정극의 제막특성)

  • Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.114-121
    • /
    • 1997
  • The positive active material for polymer film-battery was prepared by using polyphenlenediamine(PPD) synthesized in our lab. and 2,5-dimercapto-1,3,4-thiadiazole(DMcT) with various mixture ratio. The transference measurement of surface morphology and thermal stability of the prepared composite film was carried out by using SEM and TGA, respectively. Electrochemical property and electrical conductivity of the composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film was up to $200^{\circ}C$. The electrical conductivity of the composite film increased and showed the highest value(about 3 S/cm) when doped at 0.4% $LiCIO_4$ solution. And we could confirm that DMcT was effective on reactivation of PPD through cyclic voltammogram.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$ (Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Joung, Ok-Young;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.491-495
    • /
    • 2005
  • Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.