• Title/Summary/Keyword: lithium

Search Result 2,878, Processing Time 0.028 seconds

Selective Reduction of Carbonyl Compounds with Lithium Borohydride, Borane, and Borane-Lithium Chloride (1 : 0.1) in Tetrahydrofuran (수소화붕소리튬, 보란 및 보란-염화리튬 (1 : 0.1)에 의한 카르보닐화합물의 선택환원)

  • Nung Min Yoon;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.259-267
    • /
    • 1978
  • In order to find out the selective reducing characteristics of lithium borohydride, borane, and borane-lithium chloride (1 : 0.1) in the reduction of carbonyl compounds, five representative equimolar mixtures of carbonyl compounds were chosen; benzaldehyde-acetophenone, benzaldehyde-2-heptanone, 2-heptanone-benzophenone, acetophenone-benzophenone, and 2-heptanone-acetophenone, and reacted with limited amount of lithium borohydride, borane or borane-lithium chloride (1 : 0.1) in tetrahydrofuran (THF) at $0^{\circ}$. Borane-lithium chloride (1 : 0.1) showed the excellent selectivity, however, lithium borohydride and borane also exhibited good selectivity except for the 2-heptanone-acetophenone.

  • PDF

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries (층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구)

  • MinWook, Pin;Beom Tak, Na;Tae Eun, Hong;Youngjin, Kim
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.

A Study on the Electrochemical Properties for Effect of Additive of the Lithium Metal Anode (리튬 금속 음극의 첨가제 효과에 따른 전기 화학적 특성에 관한 연구)

  • Cho, S.M.;Lee, S.W.;Cho, B.W.;Ju, J.B.;Sohn, T.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • The use of lithium metal anode at lithium metal secondary battery can provide the very high energy density. Nevertheless, there are some problems that are short cycle life, lack of safety and poor thermal stability. Cycle life and cycling efficiency decline due to passivating films, dendritic lithium and increasing surface film by the reaction of lithium metal and electrolyte. This work investigated the additive effect of benzene, toluene, tetram-ethylethylenediamine, into the electrolyte. The cycling efficiency and cyclability are improved. The reason is confirmed by decreasing film resistance and increasing polarization resistance at AC impedance analysis. Electrolyte additive has a relatively less reactivity than electrolytes lithium and is adsorbed on lithium leading to suppression of the reaction between the electrolyte and lithium as well as an improvement in the lithium deposition mophology.

Effects of Combined Treatments of Lithium and Valproate on the Phosphorylation of ERK1/2 and Transcriptional Activity of ELK1 and C-FOS in PC12 Cells (리튬 및 발프로에이트 병용 처치가 PC12 세포에서 ERK1/2 인산화와 ELK1 및 C-FOS 전사활성에 미치는 영향)

  • Cha, Seung Keun;Kim, Se Hyun;Ha, Kyooseob;Shin, Soon Young;Kang, Ung Gu
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.4
    • /
    • pp.159-165
    • /
    • 2013
  • Objectives Mechanisms of clinical synergistic effects, induced by co-treatments of lithium and valproate, are unclear. Extracellular signal-regulated kinase (ERK) has been suggested to play important roles in mechanisms of the action of mood stabilizers. In this study, effects of co-treatments of lithium and valproate on the ERK1/2 signal pathway and its down-stream transcription factors, ELK1 and C-FOS, were investigated in vitro. Methods PC12 cells, human pheochromocytoma cells, were treated with lithium chloride (30 mM), valproate (1 mM) or lithium chloride + valproate. The phosphorylation of ERK1/2 was analyzed with immunoblot analysis. Transcriptional activities of ELK1 and C-FOS were analyzed with reporter gene assay. Results Single treatment of lithium and valproate increased the phosphorylation of ERK and transcriptional activities of ELK1 and C-FOS, respectively. Combined treatments of lithium and valproate induced more robust increase in the phosphorylation of ERK1/2 and transcriptional activities of ELK1 and C-FOS, compared to those in response to single treatment of lithium or valproate. Conclusions Co-treatments of lithium and valproate induced synergistic increase in the phosphorylation of ERK1/2 and transcriptional activities of its down-stream transcription factors, ELK1 and C-FOS, compared to effects of single treatment. The findings might suggest potentiating effects of lithium and valproate augmentation treatment strategy.

State Space Averaging Based Analysis of the Lithium Battery Charge/Discharge System (상태공간평균에 의한 리튬전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.387-396
    • /
    • 2009
  • The life and performance of lithium battery are greatly influenced by the formation process which is essential in the process of manufacture. Charge/discharge system for the lithium battery are required for the formation process. To simulate such a system in a conventional method takes very long time and requires huge memory space to save data files. So the simulation may be impossible with a general-purpose PC. In this paper, the lithium battery is modelled to a resistor-capacitor serial circuit and the lithium battery charge/discharge system is analyzed and simulated by using state space averaging method. As a result, the simulation time is reduced dramatically and the simulation of the lithium battery charge/discharge system becomes possible on a general-purpose PC within 3 hours. Also, both the charge/discharge characteristics and the time required to charge/discharge of the lithium battery charge/discharge system can be observed. To verify the propriety of resistor-capacitor serial circuit modeling method for lithium battery and the validity of the analysis and simulation based on state space averaging, the lithium battery charge/discharge system is composed and experimentations are carried out.

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

An Evaluation on the Weldability of Al-Li Alloys by Varestraint Testing Method (Varestraint Test법에 의한 Al-Li합금의 용접성 평가)

  • 김형태;이창배;신현식;서창제
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.48-57
    • /
    • 1996
  • The weldability of high purity aluminum-lithium binary alloys has been investigated using the Varestraint test. Autogenous GTAW (gas-tungsten-arc-welds) were run along specimens of different lithium concentration using three sets of welding parameters. Welding voltage was held constant at 10 volts. Welding current (70∼100 amps) and travel speed (23∼33 cm/min) were the parameter varied. Hot-tearing susceptibility varied with lithium content and exhibited a steep peak at 2.6 weight percent lithium. Depth of penetration increased with increasing heat input and lithium concentration. The susceptibility is influenced by the wettability of dendrites by the interdendritic eutectic liquid as well as the time available for back-Siting by eutectic liquid. The welding condition of welding current 70A and travel speed 23 cm/min was showed good resistance to cracking in aluminum-lithium alloys. Suggestions for improving weld cracking resistance are also provided.

  • PDF

A Study on Safety Evaluation Method of Lithium Secondary Battery Module for Military Operation (리튬 2차전지 모듈의 전장운용을 위한 안전성 평가기법 연구)

  • Yoo, Eun Ji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.378-386
    • /
    • 2014
  • In this paper, safety evaluation method simulating battlefield environment was studied to verify military operability of commercial lithium secondary battery. Based on the MIL-STD-2105D and STANAG standards, safety tests of lithium secondary battery module were conducted, such as bullet impact, fragment impact, fast cook-off and slow cook-off. All results satisfied the safety evaluation criteria, founded on military standard. It suggests that the lithium secondary module has high potential to be applied in a military power source. The safety evaluation methods developed in this paper can be valuable to propose the new military standards for commercial lithium secondary batteries.