論文 14-5-6

상태공간평균에 의한 리튬전지 충방전 시스템의 해석

元化映^{*}, 蔡洙龍^{**}, 洪淳瓚[†]

State Space Averaging Based Analysis of the Lithium Battery Charge/Discharge System

Hwa-Young Won, Soo-Yong Chae, and Soon-Chan Hong

요 약

리튬전지는 생산과정에서의 핵심인 화성공정에 의해 수명 및 성능이 크게 좌우되며, 화성공정을 처리하기 위해서 충방전 시스템이 필수적으로 요구되고 있다. 리튬전지 충방전 시스템의 특성을 해석하기 위해 일반적인 방법으로 시뮬레이션하면 충전동작과 방전동작에 엄청난 시간이 소요되고 메모리 용량의 한계로 인해 범용 PC로는 시뮬레이 션이 어렵다. 본 논문에서는 리튬전지를 저항-커패시터 직렬회로로 모델링하였으며 상태공간평균의 개념을 적용하 여 리튬전지 충방전 시스템을 해석하고 시뮬레이션하였다. Simplorer를 사용하여 시뮬레이션을 수행한 결과 시뮬레 이션 시간이 단축되어 범용 PC로도 3시간 내에 시뮬레이션이 가능해졌으며, 리튬전지 충방전 시스템의 정전류/정전 압 충전 특성 및 정전류 방전 특성과 충방전 소요시간을 예측할 수 있었다. 또한 충방전 시스템을 구성하고 실험하 여 리튬전지를 저항-커패시터 직렬회로로 등가화한 모델링의 타당성과 상태공간평균의 개념을 사용하여 해석하고 시뮬레이션한 방법의 유용성을 입증하였다.

ABSTRACT

The life and performance of lithium battery are greatly influenced by the formation process which is essential in the process of manufacture. Charge/discharge system for the lithium battery are required for the formation process. To simulate such a system in a conventional method takes very long time and requires huge memory space to save data files. So the simulation may be impossible with a general-purpose PC. In this paper, the lithium battery is modelled to a resistor-capacitor serial circuit and the lithium battery charge/discharge system is analyzed and simulated by using state space averaging method. As a result, the simulation time is reduced dramatically and the simulation of the lithium battery charge/discharge system becomes possible on a general-purpose PC within 3 hours. Also, both the charge/discharge characteristics and the time required to charge/discharge of the lithium battery charge/discharge system can be observed. To verify the propriety of resistor-capacitor serial circuit modeling method for lithium battery and the validity of the analysis and simulation based on state space averaging, the lithium battery charge/discharge system is composed and experimentations are carried out.

Key Words : Charge, Discharge, Lithium battery, State space averaging

1. 서 론

They Words Charge, Discharge, Entitedin Sattery, State Space average

⁺교신저자 : 정회원, 단국대 전자전기공학부 교수 E-mail : schong@dku.edu '학생회원, 단국대 대학원 전자전기공학과 석사과정 ''정회원, 단국대 대학원 전기공학과 박사과정 접수일자 : 2009. 7.28 1차 심사 : 2009. 8.24 심사완료 : 2009. 9.9

근래에 휴대전화와 노트북 PC를 비롯하여 PDA, 캠 코더, 디지털카메라와 같은 모바일 기기의 사용이 늘 어나면서, 이러한 기기의 전원으로 사용되는 리튬전지 의 수요가 증가하고 있다.

충전하여 재사용할 수 있는 2차전지인 리튬전지는 생산과정에서 충전과 방전을 여러 차례 반복하는 화성 공정을 필요로 하며, 화성공정을 처리하기 위해서 리 튞전지 충방전 시스템이 필수적으로 요구되고 있다.

리튬전지는 충전모드에서 전지의 전압이 충전상한전 압에 도달할 때까지 CC(Constant Current)모드로 충전 되고 충전상한전압에 도달한 후에는 CV(Constant Voltage)모드로 충전된다. 그리고 방전모드에서는 CC 모드로 방전하한전압까지 방전하게 된다^[1].

실제의 리튬전지를 1회 충방전하는 데에 소요되는 시간은 전류 지령값에 의해 결정된다^[2]. 예를 들어 2,600[mAH]인 리튬전지를 0.5C로 충방전하면 충전에 3시간 정도 소요되고 방전에 2시간 가까이 소요된다.

화성공정 라인에서 리튬전지에는 전지마다 충방전 시스템이 하나씩 설치되는데, 라인 하나에 최대 6만 개의 리튬전지를 설치하고 충방전한다. 이때 충방전 전류의 크기를 크게 하면 화성공정시간이 단축되는 장 점이 있다. 반면에 수천 내지는 수만 개의 충방전 시 스템에 의한 발열이 큰 문제가 되고 불량률이 높아지 는 단점이 있다. 따라서 리튬전지 생산시에는 발열문 제와 불량률을 감안하여 충방전 전류의 크기를 결정해 야 한다. 여기서 필요한 것이 충방전 전류의 크기에 따른 충방전 소요시간의 예측이다.

이러한 충방전 시스템을 일반적인 방법으로 시뮬레 이션할 경우 시뮬레이션 시간이 과다하게 필요하고 메 모리 용량의 한계로 인해 범용 PC로는 시뮬레이션이 불가능할 수도 있다. 예를 들어 충방전 시스템의 스위 칭 주파수를 100[kHz]로 하며 시뮬레이션 주기를 스위 칭 주기의 1/50로 하는 경우에 충방전 시간을 고려하 면 충전시 5.4×10¹⁰번, 방전시 4.5×10¹⁰번의 시뮬레이션 이 필요하다.

본 논문에서는 리튬전지 충방전 시스템의 특성과 충 방전 소요시간을 해석하기 위하여 리튬전지를 저항-커 패시터 직렬회로로 모델링한 후에 상태공간평균의 개 넘을 사용하여 리튬전지 충방전 시스템을 해석하고 시 뮬레이션한다. 또한 리튬전지 충방전 시스템을 구성하 고 실험하여 본 논문에서 제시한 방법의 유용성을 입 증한다.

2. 상태공간평균화법에 의한 해석

그림 1은 하나의 장치로 충전동작과 방전동작을 수 행할 수 있는 리튬전지 충방전 시스템이다^[3]. 충전시에

그림 1 리튬전지 충방전 시스템 Fig. 1 Charge/discharge system for lithium battery

는 스위치 Q을 구동시켜 포워드 변환기로 동작하는 데, 리튬전지 충방전 시스템이 고압이 아니므로 양단 포워드 변환기 대신에 일반적인 포워드 변환기를 사용 한다. 방전시에는 스위치 Q을 구동시켜 절연된 부스 트 변환기로 동작한다. 여기서 Q3는 동기정류기이다.

2.1 리튬전지의 등가모델

리튬전지 충방전 시스템을 시뮬레이션하려면 리튬전 지를 등가화할 필요가 있다. 그림 2는 리튬전지 등가 모델로서 본 논문에서는 복잡한 배터리 모델링 방법^[45] 대신에 저항-커패시터 직렬회로로 리튬전지를 등가화 한다. 등가모델에서 *C*₂의 초기전압은 0이며 *V*_{C20}는 이 론상으로는 커패시터의 초기전압이고 충방전 시스템에 서는 리튬전지의 초기값이 된다.

그림 2 리튬전지 등가모델 Fig. 2 Equivalent model of lithium battery

본 논문에서는 공칭용량이 2,600[mAH]인 리튬전지 를 대상으로 하였다. 2,600[mAH]는 2.6[A] × 3,600[sec] = 2.6 × 3,600[C]이므로 리튬전지 등가모델에서 커패시 터 *C*₂의 값은 식 (1)과 같다. 대상으로 한 리튬전지의 가용 전압 범위는 3.0[V]~4.2[V]이다^[6].

$$C = \frac{Q}{V} = \frac{2.6 \times 3600}{4.2 - 3.0} = 7,800 [F] \tag{1}$$

리튬전지 모델에서의 *R*값을 결정하기 위하여 그림 3과 같이 실제 리튬전지의 충전시험을 수행하였다. 리 튬전지는 처음에는 CC모드로 충전되다가 전지의 전압

Horizontal : 1[ksec]/div., Vertical : 200[mA]/div.

그림 3 리튬전지의 충전전류 Fig. 3 Charging current of lithium battery

이 충전상한전압에 도달한 후에는 CV모드로 충전된 다. 그림 3의 CV모드 충전구간에서 시정수 7값을 구 하면 793[sec]이다. 따라서 리튬전지를 등가화한 저항 *R*의 값은 식 (2)와 같다.

$$R = \frac{\tau}{C} = \frac{793}{7,800} = 102 [m\Omega] \tag{2}$$

2.2 충전회로

그림 4는 그림 1의 충방전 시스템이 충전기로 동작 할 때의 회로도이다. V_d는 3상 220[V] 교류를 정류한 직류전원으로서 크기가 311[V]이다. Q₁이 닫히면 변압 기를 통하여 부하단으로 에너지가 전달된다. 그리고 Q₁이 열리면 인덕터 L에 저장되었던 에너지가 D₂를 통해 부하로 전달되며 동시에 G에 저장되었던 에너지 도 부하로 전달된다. 그림 4의 회로에서 충전시의 상 태변수는 인덕터 전류 *i_L*, 커패시터 전압 V_{C1}, 리튬전지 등가모델의 커패시터 전압 V_{C2}가 된다.

Fig. 4 A circuit diagram in charging process

스위치 Q₁이 닫혀 있을 때의 상태방정식
 Q₁이 닫히면 D₃가 ON상태이고 D₂가 OFF상태가 된
 다. 그림 4에서 변압기 N₂측의 외곽루프에 KVL을 적
 용한 다음에 i_{C2} = i_L - i_{C1}을 대입하여 정리하면 식

(3)과 같다.

$$\frac{di_L}{dt} = \frac{1}{L} \left\{ \frac{V_{dc}}{N} - V_{C20} - R(i_L - i_{C1}) - v_{C2} \right\}$$
(3)

v₂-L-r_{Cl}-C_l-D_J-v₂로 구성되는 루프에 KVL을 적 용하여 수식을 세운 후 i_{Cl}에 대해 정리하면 식 (4)와 같다.

$$i_{C1} = \frac{1}{r_{C1}} \left(\frac{V_{dc}}{N} - L \frac{di_L}{dt} - v_{C1} \right)$$
(4)

식 (4)의 i_{C1} 을 식 (3)에 대입하여 정리하면 식 (5) 와 같은 상태방정식을 얻을 수 있다.

$$\frac{di_{L}}{dt} = -\frac{Rr_{C1}}{L(R+r_{C1})}i_{L} - \frac{R}{L(R+r_{C1})}v_{C1} - \frac{r_{C1}}{L(R+r_{C1})}v_{C2} + \frac{1}{LN}V_{dc} - \frac{r_{C1}}{L(R+r_{C1})}V_{C20}$$
(5)

R-*C*₂ *V*_{C20}-*C*₁-*r*_{C1}-*R*로 구성되는 루프에 KVL을 적용하여 수식을 세우면 식 (6)과 같다.

$$Ri_{C2} + v_{C2} + V_{C20} - v_{C1} - r_{C1}i_{C1} = 0 (6)$$

식 (6)에 $i_{C2} = i_L - i_{C1}$ 을 대입하여 i_{C1} 에 대해 정 리하면 $i_{C1} = C_1 (dv_{C1}/dt)$ 이므로 식 (7)과 같은 상태 방정식을 얻을 수 있다.

$$\frac{dv_{C1}}{dt} = \frac{R}{C_1(R+r_{C1})} i_L - \frac{1}{C_1(R+r_{C1})} v_{C1} + \frac{1}{C_1(R+r_{C1})} v_{C2} + \frac{1}{C_1(R+r_{C1})} V_{C20}$$
(7)

식 (6)에 $i_{C1} = i_L - i_{C2}$ 를 대입하여 i_{C2} 에 대해 정 리하면 $i_{C2} = C_2(dv_{C2}/dt)$ 이므로 식 (8)과 같은 상태 방정식을 얻을 수 있다.

$$\frac{dv_{C2}}{dt} = \frac{r_{C1}}{C_2(R+r_{C1})} i_L + \frac{1}{C_2(R+r_{C1})} v_{C1} - \frac{1}{C_2(R+r_{C1})} v_{C2} - \frac{1}{C_2(R+r_{C1})} V_{C20}$$
(8)

스위치가 닫혀 있을 때의 상태방정식 (5), (7), (8)을 형렬 형태로 나타내면 식 (9)와 같다.

$$\begin{split} \dot{X}_{c} &= A_{1}X_{c} + B_{1}U_{c} \tag{9} \\ \dot{\mathfrak{C}}, X_{c} &= \begin{bmatrix} i_{L} \quad v_{C1} \quad v_{C2} \end{bmatrix}^{T} \\ A_{1} &= \begin{bmatrix} -\frac{Rr_{\alpha}}{L(R+r_{\alpha})} & -\frac{R}{L(R+r_{\alpha})} & -\frac{r_{\alpha}}{L(R+r_{\alpha})} \\ \frac{R}{C_{1}(R+r_{\alpha})} & -\frac{1}{C_{1}(R+r_{\alpha})} & \frac{1}{C_{1}(R+r_{\alpha})} \\ \frac{r_{\alpha}}{C_{2}(R+r_{\alpha})} & \frac{1}{C_{2}(R+r_{\alpha})} & -\frac{1}{C_{2}(R+r_{\alpha})} \end{bmatrix} \\ B_{1} &= \begin{bmatrix} \frac{1}{LN} & 0 & 0 \\ -\frac{r_{\alpha}}{L(R+r_{\alpha})} & \frac{1}{C_{1}(R+r_{\alpha})} & -\frac{1}{C_{2}(R+r_{\alpha})} \end{bmatrix}^{T} \\ U_{c} &= \begin{bmatrix} V_{dc} \quad V_{C20} \end{bmatrix}^{T} \end{split}$$

- 2) 스위치 *Q*¹이 열려 있을 때의 상태방정식
- Q_1 이 열리면 D_2 가 ON상태가 되고 D_3 가 OFF상태가 된다. 그림 4의 D_2 -L-R- C_2 - V_{C20} - D_2 로 구성되는 루 프에 KVL을 적용한 다음에 $i_{C2} = i_L - i_{C1}$ 을 대입하 여 di_L/dt 를 구하면 식 (10)과 같다.

$$\frac{di_L}{dt} = \frac{1}{L} \left\{ -R(i_L - i_{C1}) - v_{C2} - V_{C20} \right\}$$
(10)

*D*₂*-L*-*r*_{Cl}-*C*_l-*D*₂로 구성되는 루프에 KVL을 적용하 여 수식을 세운 후 *i*_{C1}에 대해 정리하면 식 (11)과 같 다.

$$i_{C1} = \frac{1}{r_{C1}} \left(-L \frac{di_L}{dt} - v_{C1} \right)$$
(11)

식 (11)의 i_{C1} 을 식 (10)에 대입하여 정리하면 식 (12)와 같은 상태방정식을 얻을 수 있다.

$$\frac{di_L}{dt} = -\frac{Rr_{C1}}{L(R+r_{C1})}i_L - \frac{R}{L(R+r_{C1})}v_{C1} - \frac{r_{C1}}{L(R+r_{C1})}v_{C2} - \frac{r_{C1}}{L(R+r_{C1})}V_{C20}$$
(12)

*R-C₂ V*_{C20}-*C₁*-*r*_{C1}-*R*로 구성되는 루프에 KVL을 적용하여 수식을 세우면 다음의 식 (13)과 같다.

$$Ri_{C2} + v_{C2} + V_{C20} - v_{C1} - r_{C1}i_{C1} = 0$$
(13)

이 식은 Q이 닫혀있을 때나 열려있을 때 모두 성립 하는 식이다. 따라서 스위치가 닫혀 있을 때와 동일한 과정을 거쳐 다음의 두 상태방정식을 얻을 수 있다.

$$\frac{dv_{C1}}{dt} = \frac{R}{C_1(R+r_{C1})} i_L - \frac{1}{C_1(R+r_{C1})} v_{C1} + \frac{1}{C_1(R+r_{C1})} v_{C2} + \frac{1}{C_1(R+r_{C1})} V_{C20}$$
(14)

$$\frac{dv_{C2}}{dt} = \frac{r_{C1}}{C_2(R+r_{C1})} i_L + \frac{1}{C_2(R+r_{C1})} v_{C1} \\ - \frac{1}{C_2(R+r_{C1})} v_{C2} - \frac{1}{C_2(R+r_{C1})} V_{C20}$$
(15)

스위치가 열려 있을 때의 상태방정식인 식 (12), (14), (15)를 형렬 형태로 나타내면 식 (16)과 같다.

$$\begin{split} X_c &= A_2 X_c + B_2 U_c \qquad (16) \\ & \textcircled{P}, \\ A_2 &= \begin{bmatrix} -\frac{Rr_{\alpha}}{L(R+r_{\alpha})} & -\frac{R}{L(R+r_{\alpha})} & -\frac{r_{\alpha}}{L(R+r_{\alpha})} \\ \frac{R}{C_1(R+r_{\alpha})} & -\frac{1}{C_1(R+r_{\alpha})} & \frac{1}{C_1(R+r_{\alpha})} \\ \frac{r_{\alpha}}{C_2(R+r_{\alpha})} & \frac{1}{C_2(R+r_{\alpha})} & -\frac{1}{C_2(R+r_{\alpha})} \end{bmatrix} \\ B_2 &= \begin{bmatrix} -\frac{0}{r_{\alpha}} & 0 & 0 \\ -\frac{r_{\alpha}}{L(R+r_{\alpha})} & \frac{1}{C_1(R+r_{\alpha})} & -\frac{0}{C_2(R+r_{\alpha})} \end{bmatrix}^T \end{split}$$

3) 충전회로의 상태방정식

충전회로는 한 주기에서 *DT* 동안 스위치 *Q*이 닫 혀 있고 (1-*D*)*T* 동안 스위치가 열려 있다. 따라서 상 태공간평균화법을 적용한 상태방정식은 식 (9)와 식 (16)으로부터 얻을 수 있으며 식 (17)과 같다.

$$\begin{split} \dot{X}_{c} &= A_{c}X_{c} + B_{c}U_{c} \tag{17} \\ & \ensuremath{\mathbb{T}}, A_{c} &= A_{1}D + A_{2}(1-D) \\ & = \begin{bmatrix} -\frac{Rr_{\alpha}}{L(R+r_{\alpha})} & -\frac{R}{L(R+r_{\alpha})} & -\frac{r_{\alpha}}{L(R+r_{\alpha})} \\ \frac{R}{C_{1}(R+r_{\alpha})} & -\frac{1}{C_{1}(R+r_{\alpha})} & \frac{1}{C_{1}(R+r_{\alpha})} \\ \frac{r_{\alpha}}{C_{2}(R+r_{\alpha})} & \frac{1}{C_{2}(R+r_{\alpha})} & -\frac{1}{C_{2}(R+r_{\alpha})} \end{bmatrix} \\ & B_{c} &= B_{1}D + B_{2}(1-D) \\ & = \begin{bmatrix} \frac{D}{LN} & 0 & 0 \\ -\frac{r_{\alpha}}{L(R+r_{\alpha})} & \frac{1}{C_{1}(R+r_{\alpha})} & -\frac{1}{C_{2}(R+r_{\alpha})} \end{bmatrix}^{T} \end{split}$$

그림 4의 충전회로 출력단에서

$$\begin{aligned} v_{bc} &= Ri_{C2} + v_{C2} + V_{C20} \\ &= R(i_L - i_{C1}) + v_{C2} + V_{C20} \end{aligned} \tag{18}$$

이고 r_{C1} 에서

$$i_{C1} = \frac{v_{bc} - v_{C1}}{r_{C1}} \tag{19}$$

이므로

$$v_{bc} = \frac{Rr_{C1}}{R + r_{C1}} i_L + \frac{R}{R + r_{C1}} v_{C1} + \frac{r_{C1}}{R + r_{C1}} v_{C2} + \frac{r_{C1}}{R + r_{C1}} V_{C20}$$
(20)

이다. 따라서 충전시 리튬전지의 양단전압 v_{bc} 는 다음 의 식 (21)과 같다.

$$v_{bc} = \begin{bmatrix} \frac{Rr_{C1}}{R + r_{C1}} & \frac{R}{R + r_{C1}} & \frac{r_{C1}}{R + r_{C1}} \end{bmatrix} X_c + \begin{bmatrix} 0 & \frac{r_{C1}}{R + r_{C1}} \end{bmatrix} U_c \quad (21)$$

2.3 방전회로

그림 5는 그림 1의 충방전 시스템이 방전기로 동작 할 때의 회로도이다. 여기서 전원전압은 리튬전지의 초기전압인 V_{C20}이며, 시뮬레이션을 위하여 그림 1의 직류전압원 V_d를 저항 R₀로 대체한다. R₀의 값은 다 음과 같이 산출한다.

그림 1의 직류전압원 V_d는 3상 220[V]를 정류한 직 류 311[V]로서 그 용량이 리튬전지의 용량보다 훨씬 크다. 따라서 리튬전지의 에너지가 회생되어도 전압이 변동되지 않는다고 가정한다.

리튬전지 충방전 시스템은 방전시에 CC모드로 동작 하므로 $-i_L$ 의 평균값 I_L 이 일정하다. 변압기의 N_2 측 에 흐르는 전류 $-i_2$ 가

$$-i_2 = \left\{ \begin{array}{ll} 0 & \mbox{for} \quad 0 < t < DT \\ -i_L & \mbox{for} \quad DT < t < T \end{array} \right. \eqno(22)$$

이므로 $-i_2$ 의 평균값은 $I_2 = I_L(1-D)$ 이고 $-i_1$ 의 평균값 I_1 은

$$I_1 = \frac{I_2}{N} = \frac{I_L(1-D)}{N}$$
(23)

그림 5 방전회로도 Fig. 5 A circuit diagram in discharging process

이 된다. 이 전류 I_1 이 R_o 에 흐를 때 양단전압 v_o 가 V_{dc} 값이 되도록 R_o 값을 선정한다. 2,600[mAH]인 리 튬전지가 0.5C로 방전하고 N=17일 경우의 R_o 는 다음 과 같다.

$$R_o = \frac{V_{dc}}{I_1} = \frac{V_{dc}N}{I_L(1-D)} = \frac{311 \times 17}{1.3(1-D)} = \frac{4,066.9}{(1-D)}$$
(24)

그림 5에서 Q.가 닫히면 전원 V_{C20}로부터 부스트 용 인덕터 L에 에너지가 공급되며, 출력 커패시터 G₃ 는 부하로 에너지를 공급한다. 그리고 Q₂가 열리면 전 원 V_{C20}와 L의 에너지가 변압기를 통해 부하로 전달 된다. 그림 5에서 상태변수는 인덕터 전류 -*i*_L, 커패시 터 전압 V_{C2} 및 V_{C3}이다.

1) 스위치 Q2가 닫혀 있을 때의 상태방정식

그림 5에서 $L-V_{C20}-C_2-R-L$ 로 구성되는 루프에 KVL을 적용한 다음에 $i_{C2} = i_L$ 을 대입하여 정리하면 식 (25)와 같은 상태방정식을 얻을 수 있다.

$$\frac{d(-i_L)}{dt} = -\frac{R}{L}(-i_L) + \frac{1}{L}v_{C2} + \frac{1}{L}V_{C20}$$
(25)

그림 5에서 $i_{C2} = i_L$ 이고 $i_{C2} = C_2 (dv_{C2}/dt)$ 이다. 이 두 수식으로부터 식 (26)과 같은 상태방정식을 얻 을 수 있다.

$$\frac{dv_{C2}}{dt} = -\frac{1}{C_2}(-i_L)$$
(26)

 $R_o-C_3-r_{C3}-R_o$ 로 구성되는 루프에 KVL을 적용한 다 음에 $i_{RO} = -i_{C3}$ 를 대입하여 i_{C3} 에 대해 정리하면 $i_{C3} = C_3 (dv_{C3}/dt)$ 이므로 식 (27)과 같은 상태방정식 을 얻을 수 있다.

$$\frac{dv_{C3}}{dt} = -\frac{1}{C_3 (R_o + r_{C3})} v_{C3} \tag{27}$$

스위치가 닫혀 있을 때의 상태방정식 (25), (26), (27)을 행렬 형태로 나타내면 식 (28)과 같다.

$$\dot{X}_{d} = A_{3}X_{d} + B_{3}U_{d}$$
(28)

$$\begin{aligned} & \ensuremath{\mathbb{R}}, \ X_{d} = \begin{bmatrix} -i_{L} \ v_{C2} \ v_{C3} \end{bmatrix}^{T} \\ & A_{3} = \begin{bmatrix} -\frac{R}{L} & \frac{1}{L} & 0 \\ -\frac{1}{C_{2}} & 0 & 0 \\ 0 & 0 & -\frac{1}{C_{3}(R_{o} + r_{C3})} \end{bmatrix} \\ & B_{3} = \begin{bmatrix} \frac{1}{L} \ 0 \ 0 \end{bmatrix}^{T} \\ & U_{d} = V_{C20} \end{aligned}$$

2) 스위치 Q₂가 열려 있을 때의 상태방정식

그림 5에서 $L-v_2 - V_{C20} - C_2 - R - L$ 루프에 KVL을 적용 하면 $i_{C2} = i_L$ 이므로 다음의 식 (29)를 얻을 수 있다.

$$L\frac{d(-i_L)}{dt} + v_2 - V_{C20} - v_{C2} + R(-i_L) = 0$$
⁽²⁹⁾

여기서 v_2 는 다음과 같다.

$$v_2 = \frac{v_1}{N} = \frac{1}{N} (r_{C3} i_{c3} + v_{C3}) \tag{30}$$

식 (30)을 식 (29)에 대입한 후 $d(-i_L)/dt$ 에 대해 정리하면 식 (31)과 같다.

$$\frac{d(-i_L)}{dt} = \frac{1}{L} \left\{ -\frac{r_{C3}}{N} i_{C3} - \frac{1}{N} v_{C3} + V_{C20} + v_{C2} - R(-i_L) \right\}$$
(31)

그림 5의 Ro-C3-rC3-Ro루프에 KVL을 적용하면

$$R_{o}i_{RO} - v_{C3} - r_{C3}i_{c3} = 0 \tag{32}$$

이다. 변압기의 N_1 측에 KCL을 적용하여 i_{RO} 를 구하면

$$i_{RO} = -i_1 - i_{C3} = \frac{1}{N}(-i_L) - i_{C3}$$
(33)

가 된다. 식 (33)을 식 (32)에 대입하여 i_{C3} 를 구하면 다음과 같다.

$$i_{C3} = \frac{R_o}{N(R_o + r_{C3})} (-i_L) - \frac{1}{(R_o + r_{C3})} v_{C3}$$
(34)

식 (34)를 식 (31)에 대입하여 정리하면 식 (35)와 같은 상태방정식을 얻을 수 있다.

$$\frac{d(-i_L)}{dt} = \frac{-R_o r_{C3} - N^2 R_o R - N^2 r_{C3} R}{L N^2 (R_o + r_{C3})} (-i_L)
+ \frac{1}{L} v_{C2} - \frac{R_o}{L N (R_o + r_{C3})} v_{C3} + \frac{1}{L} V_{C20}$$
(35)

또한 $i_{C2} = i_L$ 이고 $i_{C2} = C_2(dv_{C2}/dt)$ 이다. 이 두 식으로부터 다음의 상태방정식을 얻을 수 있다.

$$\frac{dv_{C2}}{dt} = -\frac{1}{C_2}(-i_L) \tag{36}$$

식 (34)에서 $i_{C3} = C_3(dv_{C3}/dt)$ 이므로 식 (37)과 같 은 상태방정식을 얻을 수 있다.

$$\frac{dv_{C3}}{dt} = \frac{R_o}{C_3 N \left(R_o + r_{C3}\right)} \left(-i_L\right) - \frac{1}{C_3 \left(R_o + r_{C3}\right)} v_{C3}(37)$$

스위치가 닫혀 있을 때의 상태방정식 (35), (36), (37)을 행렬 형태로 나타내면 식 (38)과 같다.

3) 방전회로의 상태방정식
 방전회로 전체를 나타내는 상태방정식은 식 (28)과

식 (38)로부터 얻을 수 있으며 식 (39)와 같다.

$$\begin{split} \dot{X}_{d} &= A_{d}X_{d} + B_{d}U_{d} \quad (39) \\ & \ensuremath{\mathbb{E}}, \quad A_{d} &= A_{3}D + A_{4}(1-D) \\ & = \begin{bmatrix} \frac{-R_{o}r_{C3} - N^{2}r_{C3}R - N^{2}R_{o}R + R_{o}r_{C3}D}{LN^{2}(R_{o} + r_{C3})} & \frac{1}{L} - \frac{R_{o}(1-D)}{LN(R_{o} + r_{C3})} \\ & -\frac{1}{C_{2}} & 0 & 0 \\ & \frac{R_{o}(1-D)}{C_{3}N(R_{o} + r_{C3})} & 0 - \frac{1}{C_{3}(R_{o} + r_{C3})} \end{bmatrix} \\ & B_{d} &= B_{3}D + B_{4}(1-D) = \begin{bmatrix} \frac{1}{L} & 0 & 0 \end{bmatrix}^{T} \end{split}$$

그림 5의 방전회로의 리튬전지에서

$$v_{bd} = Ri_{C2} + v_{C2} + V_{C20}$$

= $(-R)(-i_L) + v_{C2} + V_{C20}$ (40)

이다. 따라서 방전시 리튬전지의 양단전압 v_{bd} 는 다음 의 식 (41)과 같다.

$$v_{bd} = \begin{bmatrix} -R & 1 & 0 \end{bmatrix} X_d + V_{C20} \tag{41}$$

3. 시뮬레이션

리튬전지 충방전 시스템의 충전 특성과 방전 특성을 알아보기 위해 Simplorer를 사용하여 시뮬레이션한다. 시뮬레이션에 사용한 전지의 공칭용량은 2,600[mAH] 이며 리튬전지를 0.5C로 충방전한다. 충전상한전압은 4.2[V]이며 방전하한전압은 3.0[V]이다. 시뮬레이션에 사용한 파라미터는 표 1과 같다.

그림 6은 충전시의 시뮬레이션 결과로서 리튬전지의 초기전압이 3.0[V]이므로 등가모델에서 V_{C20}=3.0[V]이며, 충전상한전압은 4.2[V]이다. 그림 6(a)와 그림 6(b)는 각각 리튬전지의 전류와 양단전압 파형으로서 6,330[sec] 까지 CC모드로 동작하고 그 후 CV모드로 동작한다.

그림 6(a)의 리튬전지 전류파형을 살펴보면 CC모드 에서 충전전류 지령값인 1,300[mA]로 충전되다가 리튬 전지 양단전압이 충전상한전압에 도달하면 CV모드로 충전이 시작되면서 전류가 거의 지수 함수적으로 감소 함을 알 수 있다. 그림 6(b)의 리튬전지 양단전압 과형 을 살펴보면 CC모드에서 리튬전지의 양단전압은 초기 전압인 3.0[V]에서 서서히 증가하다가 충전상한전압인 4.2[V]에 도달하면 CV모드가 시작되어 4.2[V]로 일정 하게 유지됨을 알 수 있다. 그림 6(c)는 충전시의 듀티

V_{dc}	311[V]	L	500[uH	[]
<u>λ</u> τ	17		1[m]]	
IV	1/	L_m	I[mH]	
C_1	1,000[µF]	R	102[mΩ]	
<i>r</i> _{C1,} <i>r</i> _{C3}	1[mΩ]	C_2	7,800[F]	
C_3	1,000[µF]	R_o	4,066.9/(1-1	D)[Ω]
0 1.00	00k 2.000k 3.000k 4.000k 5.0	0.0k 6.000k 7	7.000k 8.000k 9.000k	10.000k Ib.VAL
1.200				1.200
1.000				1.000
0.800				0.800
0.600				0.600
0.400				0.400
0.200				0.200
0				
-0.200				-0.200
5.200 5.000 4.667				Vb.VAL 5.000
				4.667
4.333				4.667
4.333 4.000 3.667				4.667 4.333 4.000 3.667
4.333 4.000 3.667 3.333				4.667 4.333 4.000 3.667 3.333
4.333 4.000 3.667 3.333 3.000				4.667 4.333 4.000 3.667 3.333 3.000
4.333 4.000 3.867 3.333 3.000 2.667				4.667 4.333 4.000 3.667 3.333 3.000 2.667
4.333 4.000 3.667 3.333 3.000 2.667 2.333 2.000				4.667 4.333 4.000 3.667 3.333 3.000 2.667 2.333 2.000
4 333 4 000 3 867 3 333 3 000 2 867 2 333 2 000 0 1 00	70K 2000K 3000K 4000K 50 (b) ご長ろ2	여분 등 000분 7 지 양단 전	700% 8000K 9000K	4.667 4.333 4.000 3.667 3.333 3.000 2.667 2.333 2.000 10.000k
4.333 4.000 3.667 3.333 3.000 2.667 2.333 2.000 0 1.00	100 2000k 3000k 4000k 50 (b) 리唇전2 298 2000k 3000k 4000k 50	00K 6.000K 7 지 양단 전 00K 6.000K 7	- 000K 8000K 9000K 건압	4.667 4.333 4.000 3.667 3.333 3.000 2.667 2.333 2.000 10.000k
4.333 4.000 3.667 3.333 2.667 2.333 2.000 0 1.00 1.00 1.00 1.00	100 2000 3000k 4000k 50 (b) 리唇전2 201 2000k 3000k 4000k 50	이야 6.00% 7 지 양단 전 00K 6.000k 7	-000K 8000K 9000K 던만	4 667 4 333 4 000 3 667 3 333 3 000 2 667 2 333 2 000 10 000× 10 000×
4.333 4.000 3.667 2.333 2.000 2.667 2.333 2.000 0 1.00 300.00 1.00 2.500 0 1.00	10K 2000K 3000K 4000K 50 (b) 리튬전2 20K 2000K 3000K 4000K 50	00K 6.000K 7 지 양단 전	7006K 8000K 9000K 건압	4 667 4 333 4 000 3 667 3 333 3 000 2 867 2 333 2 000 10 000k 10 000k
4 333 4 000 3 667 3 333 3 000 2 667 2 333 2 000 0 1 00 300.0m 0 1.00 300.0m 250.0m 255.0m	rok 2000k 3000k 4000k 50 (b) 리튬전2 20k 2000k 3000k 4000k 50	00K 6.000K 7 지 양단 전	1006K 8000K 9000K 건안 000K 8000K 9000K	4 667 4 333 4 000 3 667 3 333 3 000 2 667 2 333 10 0000 10 0000 10 0000 2 55 0m 255 0m
4 333 4 000 3 007 3 333 3 000 2 067 2 333 2 000 0 1 00 200 0m 0 1 00 200 0m 200 00	104 2000k 3000k 4000k 50 (b) 리唇전2 200 3000k 4000k 50	00k 5.000k 7 지 양단 전 00k 5.000k 7	100% 8000k 9000k 건안	4 667 4 333 4 000 3 667 3 303 2 667 2 333 3 000 2 667 2 333 10 000k 2 2000 10 000k 2 2000 2 2
4 303 4 000 3 067 2 333 2 000 2 067 2 333 2 000 0 1 00 1	106 20008 30006 40008 50 (b) 리唇전2 2008 30006 40008 50	이야 6.000k 7 지 양단 전	7005. 8005K 8005K 건압	4 667 4 333 4 000 3 667 3 300 2 667 2 333 3 000 2 667 2 333 10.000K 2 200 10.000K 2 200 2 200 20
4 303 4 000 3 067 2 333 3 000 2 667 2 333 2 000 0 1 00 3 000 1 00 1 00	10. 2000. 3000. 4000. 50 (b) 리唇전2 200. 3000. 4000. 50	00k 8.000k 7 지 양단 전 00k 8.000k 7	2006 80006 80006 전압	4 667 4 333 3 667 3 367 2 667 2 333 10 000K 2000 2000 255 0m 255 0m 255 0m 255 0m 255 0m
4 333 4 600 3 333 2 607 2 607 2 607 2 607 2 607 2 700 0 100 0 100 2 75 0n 2 50 0n 75 0n 75 0n	10年 200日 300日 400日 50 (b) 리悟ひ 10年 200日 300日 400日 50	00k 8000k 7 지 양단 전 00k 8000k 7	Angek 8000k 9000k 전입	4 667 4 333 3 667 3 333 3 000 2 667 2 333 10 000K 2000 250 0m 250 0m 250 0m 250 0m 175 0m
4 333 4 600 3 333 2 667 2 677 2 6777 2 6777 2 6777 2 6777 2 6777 2 6777 2 6	106 2000 3000 4000 50 (b) 己唇ひ) 196 2000 3000 4000 50	aax soox , 지 양단 전		4.607 4.333 4.607 3.607 2.333 3.000 2.333 3.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000 2.00000 2.00000000

비로서 CC모드에서 0.17에서 0.23까지 증가하다가 CV 모드에서 0.23으로 일정해진다.

그림 7은 방전시의 시뮬레이션 결과로서 리튬전지의 초기전압이 4.2[V]이므로 등가모델에서 V_{C20} =4.2[V]이 며, 방전하한전압은 3.0[V]이다. 부하단은 저항부하로 대체하였으며, R_o 는 식 (24)로 계산한 4,066.9/(1-D)[Ω] 이다.

그림 7(a)와 그림 7(b)는 각각 리튬전지의 전류와 양단전압 파형이며 6,405[sec]까지 CC모드로 방전한다. 그림 7(a)의 리튬전지 전류파형을 살펴보면 CC모드에 서 방전전류 지령값인 1,300[mA]로 방전하다가 리튬전

표 1 시뮬레이션 파라미터 Table 1 Simulation parameters

지 양단전압이 방전하한전압에 도달하면 전류가 0이 되는 것을 알 수 있다. 그림 7(b)의 리튬전지 양단전압 파형을 살펴보면 CC모드에서 리튬전지의 양단전압은 4.2[V]에서 서서히 감소하다가 방전하한전압인 3.0[V] 에 도달하면 방전이 멈추는 것을 알 수 있다. 그림 7(c)는 방전시의 듀티비로서 CC모드에서 0.779에서 0.836까지 증가하다가 방전이 종료되면 0이 된다.

우리 대학 전력전자연구실에서 사용하고 있는 오실 로스코프의 시간 축 스케일은 최대가 1[ksec/div.]이다. 따라서 10,000[sec]까지 실험이 가능하다. 이에 맞추어 시뮬레이션도 10,000[sec]까지 시행하였다. 상태공간평 균화법을 사용하여 리튬전지 충방전 시스템을 10,000[sec] 까지 시뮬레이션하는 데에 소요되는 시간은 충전시에 2시간 30분 정도이며 방전시에 2시간 정도이다.

4. 실험 결과 및 검토

리튬전지를 저항-커패시터 직렬회로로 등가화하고 상태공간평균의 개념을 적용해서 시뮬레이션하여 리튬 전지 충방전 시스템의 충방전 특성과 소요시간을 파악 한 방법의 유용성을 입증하기 위하여 시스템을 구성하 고 실험하였다.

실험에 사용한 리튬전지는 Enerland사의 PF465690 으로서 리튬폴리머전지이며 공칭용량은 2,600[mAH]이 다. 이 리튬전지의 충전상한전압은 4.2[V]이며 방전하 한전압은 3.0[V]이다. 충방전 시스템은 3상 220[V]를 정류한 직류 311[V]를 전원으로 사용하였으며 스위칭 주파수는 100[kHz]이다. 실험에 사용된 파라미터는 *L*=500[µH], *C*₁=*C*₃=1,000[µF], *N*=17로서 시뮬레이션에 서 사용한 파라미터와 동일하다. 리튬전지 충방전 시 스템의 특성을 확인하기 위해 오실로스코프로 10,000[sec] 동안 측정하였다.

충전시 실험 결과는 그림 8과 같다. 그림 8(a)는 리 튬전지의 충전전류 파형으로서 1,300[mA]의 일정전류 로 충전되다가 6,519[sec]에서 CV모드로 전환되면서 전류가 거의 지수함수적으로 감소함을 알 수 있다. 그 림 8(b)는 리튬전지의 양단전압 파형으로서 이 전압이 충전상한전압인 4.2[V]에 도달하면 CV모드로 전환하 여 충전하게 된다.

충전시 CC모드에서 CV모드로 변환되는 시점을 살 펴보면 시뮬레이션의 경우에 6,330[sec]이고 실험의 경 우에 6,519[sec]이다. 두 시점의 차이는 189[sec]로서 실험결과인 6,519[sec]를 기준으로 하면 2.90[%]의 오 차가 된다.

Fig. 8 Experimental results in charging process

1,300[mA]의 CC모드로 방전시킨 경우의 실험 결과 는 그림 9와 같다. 그림 9(a)는 리튬전지의 방전전류 파형으로서 6,519[sec]까지 CC모드로 방전하고 있다. 그림 9(b)는 리튬전지의 양단전압 파형이며, 4.2[V]에 서 방전을 시작하여 방전하한전압에 도달하면 방전을 멈춘다. 이 파형에서 방전이 종료된 후에 리튬전지 양 단전압이 약간 상승하는데, 이는 충방전 시스템이 동 작을 멈춘 이후의 전압파형으로서 리튬전지의 화학적 인 특성에 의한 것으로 보인다.

방전이 종료되는 시점을 살펴보면 시뮬레이션의 경 우에 6,405[sec]이고 실험의 경우에 6,519[sec]이다. 두 시점의 차이는 114[sec]로서 이는 실험시의 방전종료 시점 대비 1.75[%]에 해당된다.

시뮬레이션 결과와 실험 결과 모두에서 충전시간과 방전시간이 한 시간 이상 차이가 나는데, 이는 리튬전 지의 효율이 100%가 아니어서 발생하는 것으로 보인다.

Fig. 9 Experimental results in discharging process

5.결 론

본 논문에서는 리튬전지를 저항-커패시터 직렬회로 로 등가화하고 상태공간평균의 개념을 사용하여 리튬 전지 충방전 시스템을 해석하고 시뮬레이션하였다.

리튬전지를 충방전하는 과정을 일반적인 방법으로 시뮬레이션하면 소요되는 시간이 매우 길고 시뮬레이 선 프로그램에서 자동적으로 생성되는 파일의 수도 엄 청나서 범용 PC로서는 시뮬레이션을 수행하지 못할 수도 있다. 그러나 상태공간평균화법을 사용하여 시뮬 레이션을 수행한 결과 범용 PC로도 세 시간 내에 시 뮬레이션이 가능함을 확인하였다. 이에 따라 본 논문 에서 제시한 해석방법을 사용하면 리튬전지 충방전 시 스템의 정전류/정전압 충전 특성 및 정전류 방전 특성 과 충방전 소요시간을 확인할 수 있다.

또한 실제 리튬전지 충방전 시스템을 구성하고 실험 하여 리튬전지를 저항-커패시터 직렬회로로 모델링하 고 상태변수평균의 개념을 사용한 시뮬레이션 해석법 의 유용성을 확인하였다.

충전과정에서 CC모드에서 CV모드로 전환되는 시점 은 실험결과 기준 시뮬레이션 결과가 2.90[%]의 차이 가 나고 방전과정에서 방전이 종료되는 시점은 1.75[%] 의 차이가 난다. 이에 따라 리튬전지를 간단한 저항-커패시터 직렬회로로 등가화하여도 전반적인 리튬전지 충방전 시스템의 특성을 파악하는데 문제가 없음을 확 인하였다.

이 연구는 2008학년도 단국대학교 대학연구비 지원으로 연구되었음.

참 고 문 헌

- R. C. Cope and Y. Podrazhansky, "The Art of Battery Charging," Proceedings of 14th Annual Battery Conference on Applications and Advances, pp.233–235, 1999.
- [2] Mahmoud A. Alahmad and Herb L. Hess, "Evaluation and Analysis of a New Solid-State Rechargeable Microscale Lithium Battery," IEEE Transactions on Industrial Electronics, Vol. 55, No. 9, pp. 3391–3401, September 2008.
- [3] 채수용, 서영민, 정대택, 윤덕용, 홍순찬, "이차전지 충방 전용 직류-직류 변환기에 관한 연구", 대한전기학회 춘계 학술대회 논문집, pp.235-237, 2006. 4.
- [4] Hsueh-Chih Yang and Lan-Rong Dung, "An Accurate Lithium-Ion Battery Gas Gauge Using Two-Phase STC Modeling," IEEE ISIE Proceedings, pp. 866–871, 2007.
- [5] M. Debert, G. Colin, M. Mensler, Y. Chamaillard, and L. Guzzella, "Lithium-Ion Battery Models for HEV Simulator," Proceedings of International Conference on Advances in Hybrid Powertrains, Nov. 2008.
- [6] Data Sheet, "ENERLAND06-PF-HP-20D001", Enerland Co. Ltd., 2006.

저 자 소 개

<u>원화영(元化映)</u>

1985년 6월 23일생. 2008년 단국대 전기 전자컴퓨터공학부 졸업. 현재 동 대학원 전자전기공학과 석사과정.

<u>채수용(蔡洙龍)</u>

1979년 1월 5일생. 2005년 단국대 전기공 학과 졸업. 2007년 동 대학원 전기공학과 졸업(석사). 현재 동 대학원 전기공학과 박사과정.

<u>홍순찬(洪淳瓚)</u>

1950년 2월 24일생. 1973년 서울대 전기 공학과 졸업. 1975년 동 대학원 전기공학 과 졸업(석사). 1985년 동 대학원 전기공 학과 졸업(공박). 1975년~1978년 해군사 관학교 교수부 전기공학실 전임강사. 1978 년~현재 단국대 전자전기공학부 교수.

1986년~1987년 미국 텍사스 A&M 대학교 방문교수. 1997 년~2000년 대한전기학회 이사. 2002년 당 학회 회장. 2002 년~2005년 단국대 공과대학 학장.