• 제목/요약/키워드: liquiritin

검색결과 66건 처리시간 0.022초

Isolation of Flavonoids from Processed Aconiti Tuber

  • Lyu, Ha-Na;Kwak, Ho-Young;Lee, Dae-Young;Kim, Kyong-Tai;Kim, Se-Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • 제51권4호
    • /
    • pp.165-168
    • /
    • 2008
  • A processed Aconiti tuber (Korean name, Kyeong-Po Buja) was extracted with 80% aqueous EtOH, and the concentrated extract was partitioned with EtOAc and water ($H_2O$). From the EtOAc fraction, two flavonoids were isolated through repeated silica gel column chromatographies. From the result of physico-chemical data including NMR, mass spectrometry and IR, the chemical structures of the compounds were determined to be liquiritin (1) and liquiritigenin (2). This is the first study to isolate flavonoids (1) and (2) from the processed Aconiti tuber.

순무(Brassica rapa ssp.) 뿌리로부터 flavonoid의 분리 및 동정 (Isolation and Identification of Flavonoids from the Roots of Brassica rapa ssp.)

  • 정락훈;;조진경;이대영;;이민호;이경태;최명숙;정태숙;안은미;정해곤;노영덕;백남인
    • Journal of Applied Biological Chemistry
    • /
    • 제56권1호
    • /
    • pp.23-27
    • /
    • 2013
  • 순무뿌리(Brassica rapassp)를 실온에서 95% ethanol 수용액으로 추출하고 이 추출물을 ethyl acetate (EtOAc)분획, n-butyl alcohol 분획 및 $H_2O$ 분획으로 나누었다. EtOAc분획에 대하여 silica gel, ODS 및 Sephadex LH-20 column chromatography를 반복실시 하여 5종의 flavonoid를 분리하였다. NMR, IR 및 MS data를 해석하여 각각 licochalcone A (1), 4,4'-dihydroxy-3'-methoxychalcone (2), liquiritigenin (3), liquiritin (4), isoliquiritin (5)으로 구조동정하였다. 이들 화합물들은 순무뿌리에서는 처음으로 분리되었다.

LC-MS/MS를 이용한 향소산 중 15종 성분의 정량분석 (Quantitative Analysis of the Fifteen Constituents in Hyangso-San by LC-MS/MS)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권4호
    • /
    • pp.381-388
    • /
    • 2016
  • Hyangso-san is a traditional herbal medicine that consists of the seven herbal medicines, Cyperi Rhizoma, Perillae Folium, Atractylodis Rhizoma, Citri Unshius Pericarpium, Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma Crudus, and Allii Fistulosi Bulbus. Hyangso-san has long been clinically used to treat the influenza, including headache, ferver, chills, and pantalgia. In this study, we were performed the simultaneous analysis of the 15 marker compounds (liquiritin apioside, liquiritin, ferulic acid, naringin, hesperidin, rosmarinic acid, liquiritigenin, kaempferol, glycyrrhizin, nobiletin, 6-gingerol, elemicin, atractylenolide III, nootkatone, and atractylenolide I) in Hyangso-san using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Column for the separation of the 15 ingredients was used a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ by using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient condition. Identifications of all analytes were performed using a Waters ACQUITY TQD LC-MS/MS system. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. Correlation coefficient of the calibration curve was ${\geq}0.9958$. The values of limits of detection and quantification of the 15 components were 0.002-4.29 and 0.01-12.88 ng/mL, respectively. The result of an analysis using the established LC-MS/MS method, kaempferol and atractylenolide I were not detected, while other 13 compounds were 0.08-56.87 mg/g in lyophilized Hyangso-san sample.

HPLC-PDA를 이용한 오약순기산 중 6종 성분의 동시분석 (Simultaneous Analysis of Six Constituents in Oyaksungi-san using HPLC-PDA)

  • 서창섭;김정훈;신현규
    • 대한한의학방제학회지
    • /
    • 제20권2호
    • /
    • pp.37-46
    • /
    • 2012
  • Objectives : Oyaksungi-san(Wuyaoshunqisan) has been used for treatment of stroke and rheumatoid arthritis in Korea. In this study, a simple and accurate high-performance liquid chromatography(HPLC) method was established for simultaneous determination of six main components, liquiritin, ferulic acid, naringin, hesperidin, neohesperidin, and glycyrrhizin in Oyaksungi-san, a traditional Korean herbal prescription. Methods : The analytical column for separation of six constituents was used a Gemini $C_{18}$ column maintained at $40^{\circ}C$. The mobile phase consisted of two solvent systems, 1.0% (v/v) acetic acid in $H_2O$ (A) and 1.0% (v/v) acetic acid in acetonitrile (B) by gradient flow. The flow rate was 1.0 mL/min and the detector was a photodiode array (PDA) set at 254 nm for glycyrrhizin, 280 nm for liquiritin, naringin, hesperidin, and neohesperidin, and 320 nm for ferulic acid. Results : Calibration curves were acquired with $r^2$ values ${\geq}0.9998$. The results of recovery test were 91.58%-105.90% with a relative standard deviations (RSDs, %) value less than 2.0%. The values of RSD for intra- and inter-day precision were 0.03%-1.72% and 0.03%-1.63%, respectively. The contents of the six compounds in Oyaksungi-san were 0.33-9.30 mg/g. Conclusions : The newly established HPLC method will be helpful to improve quality control of Oyaksungi-san.

LC-ESI-MS/MS를 이용한 계지탕 중 주요 성분 분석 (Quantitative Determination of the Bioactive Marker Components in Gyeji-tang Using LC-ESI-MS/MS)

  • 서창섭;하혜경
    • 생약학회지
    • /
    • 제49권1호
    • /
    • pp.76-83
    • /
    • 2018
  • A traditional herbal formula, Gyeji-tang has been used to treat the early colds, headache, chills, and fever in Asian countries. In this study, we were performed simultaneous determination of the 14 bioactive marker compounds, gallic acid, spinosin, paeoniflorin, albiflorin, liquiritin apioside, liquiritin, 6'''-feruloylspinosin, liquilitigenin, coumarin, cinnmamic acid, benzoylpaeoniflorin, cinnamaldehyde, glycyrrhizin, and 6-gingerol in Gyeji-tang using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS). Analytical column was used a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) and maintained at $45^{\circ}C$ with a flow rate of 0.3 mL/min. The mobile phase consists of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was conducted using multiple reaction monitoring in the positive and negative modes by a Waters ACQUITY TQD LC-MS/MS system. The calibration curves of 14 bioactive marker compounds showed linearity with correlation coefficients ${\geq}0.9798$. The limits of detection and quantification values were in the range of 0.11-6.66 ng/mL and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the established LC-MS/MS method, the amounts of tested 14 compounds in the lyophilized Gyeji-tang sample were detected up to $85.7{\mu}g/g$. These results may be useful for quality assessment of a traditional herbal formulas.

LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석 (Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry)

  • 서창섭;하혜경
    • 생약학회지
    • /
    • 제48권4호
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

감초의 추출용매별 항염증 효능 평가 연구 (Evaluation of Solvent Extraction on the Anti-Inflammatory Efficacy of Glycyrrhiza uralensis)

  • 윤태숙;전명숙;김승주;이아영;문병철;천진미;추병길;김호경
    • 한국약용작물학회지
    • /
    • 제18권1호
    • /
    • pp.28-33
    • /
    • 2010
  • Glycyrrhiza uralensis (Leguminosae) is a well-known herbal medicine that has long been valued as a demulcent to relieve inflammatory disorders. To compare the influence of different solvents on the anti-inflammatory efficacy of G. uralensis, we measured the inhibition of pro-inflammatory mediators such as NO, TNF-$\alpha$, and $PGE_2$ in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells by extracts produced using different solvents (water, methanol, ethanol, or n-hexane). The results showed that methanol was the most effective solvent for the inhibition of both NO and $PGE_2$ production in RAW 264.7 cells. However, there was no difference among the extracts for inhibition of TNF-$\alpha$. Further study must be performed for the analysis of correlation between the anti-inflammatory activity of extracts produced using different solvents and the content of major bioactive compounds in G. uralensis, such as glycyrrhizin and liquiritin. The present study suggests that methanol may be a more appropriate solvent of G. uralensis than other solvents (water, ethanol, and n-hexane) to yield the greatest anti-inflammatory activity for food additives and medicine.

한약수치에 관한 연구(제 9보) -초감초(炒甘草) 제법의 표준화 및 규격화(1)- (Studies on the Processing of Crude Drugs(IX) -Preparing Standardization and Regulation of Stir-Frying Glycyrrhzia root(1)-)

  • 최혁재;이우정;박성환;송보완;김동현;김남재
    • 생약학회지
    • /
    • 제36권3호통권142호
    • /
    • pp.209-219
    • /
    • 2005
  • In this study, we carried out the preparing standardization and regulation of processed Glycyrrhizae Radix (PGR) which have been widely used in oriental medicines. Glycyrrhizae Radix(GR) have been generally prepared by the stir-frying, or mix-frying with honey for the purpose of decreasing sweetness and augmenting vitality. Firstly, we tried to standardize PGR prepared by the stir-frying. We purchased 14 kinds of PGR and non-processed GR(NPGR) at oriental physician's offices and oriental pharmacies on a nation scale, respectively. The amounts of dry on loss, water extract, diluted ethanol extract, ether extract, total ash, acid insoluble ash, glycyrrhizin(GL), glycyrrhetic acid(GA) and liquiritin(LQ) of them were examined. The amounts of dry on loss, GL and LQ in commercial PGRs showed remarkable decrease, while GA showed increased as compared with NPGR. In order to standardize preparing method of PGR, the effect of heating time on physico-chemical parameters and biological activities were examined. Physico-chemical parameters such as dry on loss, extract amount, GL and LQ contents in PGRs showed decrease, however, GA was increased with heating time as compared with NPGR. Also, GA, obtained from heat-treated GR, was found as an artifact in PGRs. PGR was more effective than NPGA in vitro test of DPPH scavenging effect and TBA-Rs reducing effect. PGR and NPGR showed potent hepatoprotective effect on $CCl_4-intoxicated$ rats. Especially, PGR prepared by 80 min of heating was the most effective. Considering these results, the optimal condition for PGR preparation was $150^{\circ}C$ for 80 min.

LC-ESI-MS에 의한 사군자탕의 지표성분 분석 (Analysis of the Marker Compounds in Sagunja-tang by LC-ESI-MS)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제50권1호
    • /
    • pp.65-71
    • /
    • 2019
  • One of the oriental medicine prescriptions, Sagunja-tang consists of four herbal medicines (Ginseng Radix, Poria Sclerotium, Atractylodis Rhizoma Alba, and Glycyrrhiziae Radix et Rhizoma) and has been used as a medicine to enhance tonify the function of spleen and stomach in Korea. In this study, we conducted simultaneous analysis of the 9 marker components, liquiritin apioside, liquiritin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, atractylenolide III, atractylenolide II, and atractylenolide I in Sagunja-tang using a liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Marker compounds were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, 1.7 mm) and the column was maintained at $45^{\circ}C$. The mobile phase consists of 0.1% (v/v) aqueous formic acid and acetonitrile with gradient condition. The LC-MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS system with multiple reaction monitoring (MRM) method in the positive and negative modes. The calibration curves of the nine marker components showed good linearity with coefficient of determination ${\geq}0.9984$ within tested range. The limits of detection and limits of quantification values were 0.27-2.42 ng/mL and 0.81-7.27 ng/mL, respectively. The concentrations of tested 9 analytes in the lyophilized Sagunja-tang sample using the established LC-ESI-MS/MS MRM method were detected up to 16.593 mg/g. These results can be useful as a basic data for the quality control of an oriental medicine prescriptions.

감초의 Tyrosinase 활성 억제 성분 (Tyrosinase Inhibitors isolated from the Roots of Glycyrrhiza glabra L.)

  • 이주상;김정아;조세훈;손애량;장태수;소명숙;정시련;이승호
    • 생약학회지
    • /
    • 제34권1호통권132호
    • /
    • pp.33-39
    • /
    • 2003
  • Eight compounds were isolated from the roots of Glycyrrhiza glabra by the tyrosinase inhibitory activity guided fractionation, and their structures were identified as liquiritigenin (1), isoliquiritigenin (2), isoliquiritigenin-2'-O-methyl ether (3), liquiritin (4), isoliquiritin (5), ononin (6), glycycoumarin (7), glycyrol (8) by analysis of spectral data. Compound 3 exhibited the most potent inhibitory effect on mushroom tyrosinase activity ($IC_{50}$, 47 M).