• Title/Summary/Keyword: liquid phase ammonia treatment

Search Result 7, Processing Time 0.022 seconds

Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide (암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성)

  • Park, Mi-Seon;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.613-618
    • /
    • 2014
  • In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.

Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment (암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성)

  • Kim, Yesol;Cho, Seho;Park, Se-Kook;Jeon, Jae-Deok;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.292-299
    • /
    • 2014
  • In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at $300^{\circ}C$, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.

Studies on the Deodorization in the Nightsoil Treatment Plant with liquid Phase Catalytic Oxidation Method by Utilization of Fe-EDTA (Fe-EDTA계 액상촉매 산화법에 의한 분뇨처리장 악취제거에 관한 연구)

  • 이인화
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.105.1-113
    • /
    • 1992
  • The present study was performed to develop the removal system of the offensive gases, including hydrogen sulfide of acid gas, ammonia or amice of base gas, from the nightsoil treatment plant. In order to remove the offensive gases, the Fe-EDTA system liquid phase catalytic oxidation method with the bubble lift column reactor was employed. From the results obtained, it was confirmed that the offensive gases can be deodorized simultaneously and also hydrogen sulfide of acid gas, ammonia of base gas completely removed at pH 6.45. In addition, as input gases feed rate the efficiency of acid gas did not change but the efficiency of base gases decreased to approximately 90 % at pH 6, 0. From the result of particle size analyzer, it was found that the particle sizes including sulfur and other impurites grew up to $21{\mu}m$ over 72hour reaction time.

  • PDF

Emulsion liquid membranes for cadmium removal: Studies of extraction efficiency

  • Ahmad, A.L.;Kusumastuti, Adhi;Derek, C.J.C.;Ooi, B.S.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.11-25
    • /
    • 2013
  • Emulsion liquid membrane (ELM) process suffers from emulsion instability problem. So far, emulsion produced by mechanical methods such as stirrer and homogenizer has big size and high emulsion breakage. This paper discussed the application of emulsion produced by sonicator to extract cadmium in a batch ELM system. The emulsions consist of N,N-Dioctyl-1-octanamine (trioctylamine/TOA), nitrogen trihydride (ammonia/NH4OH), sorbitan monooleate (Span 80), and kerosene as carrier, stripping solution, emulsifying agent, and organic diluent, respectively. Effects of comprehensive parameters on extraction efficiency of Cd(II) such as emulsification time, extraction time, stirring speed, surfactant concentration, initial feed phase concentration, carrier concentration, volume ratio of the emulsion to feed phase, and pH of initial feed phase were evaluated. The results showed that extraction efficiencies of Cd(II) greater than 98% could be obtained under the following conditions: 15 minutes of emulsification time, 4 wt.% of Span 80 concentration, 4 wt.% of TOA concentration, 15 minutes of extraction time, 250 rpm of stirring speed, 100 ppm of initial feed concentration, volume ratio of emulsion to feed phase of 1:5, and initial feed pH of 1.53.

Deodorization Management of Swine-Slurry by Addition of Phototrophic Bacteria (광합성 세균을 이용한 고농도 양돈슬러리의 무취화 관리방안에 관한 연구)

  • 이명규;권오중;정진영;태민호;허재숙
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1998
  • This study was carried out to find deodorization effect of swine-slurry by addition of phototrophic bacteria(PTB). The pilot-scale reactors operation conditions was designed by the inoculum amounts of PTB and light-conditions. Treatment conditions was divided into 3 types; 106 MPN/ml$.$Dark(T-1), 108 MPN/ml$.$Dark(T-2), 108 MPN/ml$.$Natural light(T-3). The changes of the concentration of volatile fatty acids(VFAs), hydrogen sulfide(H2S), ammonia (NH3) and odor intensity were analyzed during the treatment period(35 days). From results of this study, the maximum intensity of odor in the headspace of the reactor T-1 was 4.82 and T-2, T-3 was 2.63, respectively. In swine-slurry of reactors used, it almost took 10 days until to be stabilized with solid and liquid phase. Intensity of odor in headspace was mainly derived from the liquid phase. The PTB inoculum method to swine-slurry was very effective in reduction of VFAs, H2S and Sulfate-reducing bacteria(SRB) concentration. Expecially, It was interested in reverse growth behaviour of SRB and PTB in these conditions.

  • PDF

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF