Browse > Article
http://dx.doi.org/10.14478/ace.2014.1030

Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment  

Kim, Yesol (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Cho, Seho (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Park, Se-Kook (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Jeon, Jae-Deok (Energy Storage Department, Korea Institute of Energy Research)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.25, no.3, 2014 , pp. 292-299 More about this Journal
Abstract
In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at $300^{\circ}C$, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.
Keywords
carbon felt; nitrogen doping; liquid phase ammonia treatment; redox reaction; vanadium redox flow batteries;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. Seredych, D. H. Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008).   DOI   ScienceOn
2 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, J. Ind. Eng. Chem., 18, 116-122 (2012).   DOI   ScienceOn
3 Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, Jun Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010).   DOI
4 D. Ha, S. K. Kim, D. Jung, S. Lim, D. H. Peck, B. Lee, and K. Lee, Effect of carbon felt oxidation methods on the electrode performance of vanadium redox flow battery, J. Korean Electrochem. Soc., 12, 263-270 (2009).   과학기술학회마을   DOI
5 T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, and A. Su, Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery, J. Solid state Electrochem., 16, 579-585 (2012).   DOI
6 J. Kim, M. Choi, and R. Ryoo, Synthesis of mesoporous carbons with controllable N-content and their supercapacitor properties, Bull. Korea Chem. Soc., 29, 413-416 (2008).   과학기술학회마을   DOI
7 W. G. Pell, B. E. Conway, and N. Marincic, Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal. Chem., 491, 9-21 (2000).   DOI
8 M. Muraoka, H. Tomonaga, and M. Nagai, Ammonia-treated brown coal and its activity for oxygen reduction reaction in polymer electrolyte fuel cell, Fuel, 97, 211-218 (2012).   DOI
9 B. Sun and M. S. Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments, Electrochim. Acta, 37, 2459-2465 (1992).   DOI   ScienceOn
10 Z. G. lez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamaria, M. Granda, and R. Menendez, Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries, Carbon, 50, 828-834 (2012).   DOI
11 P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, and G. Cui, Graphene oxide nanoplatelets as excellent electrochemical active materials for ${VO_2}^+$/image and $V^{2+}$/$V^{3+}$ redox couples for a vanadium redox flow battery, Carbon, 49, 693-700 (2011).   DOI
12 Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang, Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea, Appl. Surf. Sci., 258, 1704-1710 (2011).   DOI
13 A. D. Blasi, O. D. Blasi, N. Briguglio, A. S. Aricoa, D. Sebastian, M. J. Lazaro, G. Monforte, and V. Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell, J. Power Sources, 227, 15-23 (2013).   DOI
14 P. H. Matter, L. Zhang, and U. S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal., 239, 83-96 (2006).   DOI   ScienceOn
15 R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 4891-4893 (2008).
16 B. C. Bai, S. Cho, H. R. Yu, K. B. Yi, K. D. Kim, and Y. S. Lee, Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2$/$CH_4$ separation, J. Ind. Eng. Chem., 19, 776-783 (2013).   DOI   ScienceOn
17 L. Xu, J. Guo, F. Jin, and H. Zeng, Removal of $SO_2$ from $O_2$-containing flue gas by activated carbon fiber (ACF) impregnated with $NH_{3}$, Chemosphere., 62, 823-826 (2006).   DOI   ScienceOn
18 E Jeong, M. J. Jung, and Y. S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluorine Chem., 150, 98-103 (2013).   DOI   ScienceOn
19 C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma-activated transport reactions from a solid carbon source, Appl. Phys. A., 69, 241-244 (1999).
20 J. C. Kim, C. H. Ryu, and A. S. Kang, The anodic oxidation of carbon felt electrodes for the all vanadium redox-flow battery, Appl. Chem. Eng., 12, 517-522 (2001).
21 P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, and B. Yi, Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack, J. Power Sources, 162, 1416-1420 (2006).   DOI   ScienceOn
22 H. Q. Zhu, Y. M. Zhang, L. Yue, W. S. Li, G. L. Li, D. Shu, and H. Y. Chen, Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery, J. Power Sources, 184, 637-640 (2008).   DOI   ScienceOn
23 H. S. Kim, Electrochemical properties of graphite-based electrodes for redox flow batteries, Bull. Korean Chem. Soc., 32, 571-575 (2011).   과학기술학회마을   DOI
24 P. Alotto, M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sust. Energ. Rew., 29, 325-335 (2014).   DOI   ScienceOn
25 H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, and M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery, Electrochim. Acta, 36, 1191-1196 (1991).   DOI
26 H. Zhou, H. Zhang, P. Zhao, and B. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/ bromine redox flow battery, Electrochim. Acta, 51, 6304-6312 (2006).   DOI
27 F. Q. Xue, H. T. Zhang, C. X. Wu, T. Ning, and X. Xu, Performance and mechanism of Prussian blue (PB) modified carbon felt electrode, Trans. Nonferrous Met. Soc. China, 19, s594-s599 (2009).   DOI
28 C. P. d. Leon, A. F. Ferrer, J. G. Garcia, D. A. Szanto, and F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources, 160, 716-732 (2006).   DOI   ScienceOn
29 B. Sun and M. S. Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments, Electrochim. Acta, 37, 2459-2465 (1992).   DOI   ScienceOn
30 C. Gao, N. Wang, S. Peng, S. Liu, Y. Lei, X. Liang, S. Zeng, and H. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochim. Acta, 88, 193-202 (2013).   DOI
31 S. Maldonado and K. J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes, J. Phys. Chem. B., 109, 4707-4716 (2005).   DOI   ScienceOn
32 K. J. Kim, Y. J. Kim, J. H. Kim, and M. S. Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Mater. Chem. Phys., 131, 547-553 (2011).   DOI
33 N. D. Kim, W. Kim, J. B. Joo, S. Oh, P. Kim, Y. Kim, and J. Yi, Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation, J. Power Sources, 180, 671-675 (2008).   DOI   ScienceOn
34 T. M. Tseng, R. H. Huang, C. Y. Huang, K. L. Hsueh, and F. S Shieu, Improvement of titanium dioxide addition on carbon black composite for negative electrode in vanadium redox flow battery, J. Electrochem. Soc., 160, A1269-A1275 (2013).   DOI
35 M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor, J. Colloid Interf. Sci., 381, 152-157 (2012).   DOI
36 J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33, 1641-1653 (1995).   DOI   ScienceOn
37 L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079-3090 (2010).   DOI   ScienceOn
38 Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, and R. Santamaria, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochem. Commun., 13, 1379-1382 (2011).   DOI