Browse > Article
http://dx.doi.org/10.14478/ace.2014.1105

Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide  

Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Yun, Kug Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.25, no.6, 2014 , pp. 613-618 More about this Journal
Abstract
In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.
Keywords
graphene oxide; nitrogen doping; liquid phase ammonia treatment; EMI shielding efficiency;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 B. Stohr, H. P. Boehm, and R. Schlogl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, 29, 707-720 (1991).   DOI   ScienceOn
2 H. P. Boehm, G. Mair, T. Stoehr, A. R. De Rincon, and B. Tereczki, Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions, Fuel, 63, 1061-1063 (1984).   DOI
3 S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, N. M. Huang, H. M. Neoh, H. N. Lim, R. Jamal, and R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method, Nanoscale Res. Lett., 7, 541-547 (2012).   DOI
4 A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57 (2007).   DOI   ScienceOn
5 H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83 2427-2433 (2007).
6 H. Zhang, T. Kuila, N. H. Kim, D. S. Yu, and J. H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials, Carbon, 69, 66-78 (2014).   DOI
7 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401-187405 (2006).   DOI   ScienceOn
8 B. K. Saikia, R. K. Boruah, and P. K. Gogoi, A X-ray diffraction analysis on graphene layers of Assam coal, J. Chem. Sci., 121, 103-106 (2009).   DOI
9 E. Jeong, M. J. Jung, and Y. S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluorine Chem., 150, 98-103 (2013).   DOI   ScienceOn
10 C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma-activated transport reactions from a solid carbon source, Appl. Phys. A, 69, 241-244 (1999).
11 B. C. Bai, S. Cho, H. R. Yu, K. B. Yi, K. D. Kim, and Y. S. Lee, Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2/CH_4$ separation, J. Ind. Eng. Chem., 19, 776-783 (2013).   DOI   ScienceOn
12 P. H. Matter, L. Zhang, and U. S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal., 239, 83-96 (2006).   DOI   ScienceOn
13 R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 40, 4891-4893 (2008).
14 J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33, 1641-1653 (1995).   DOI   ScienceOn
15 M. Seredych, D. H. Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008).   DOI   ScienceOn
16 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, J. Ind. Eng. Chem, 18, 116-122 (2012).   DOI   ScienceOn
17 H. He, J. Klinowski, M. Foster, and A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett., 287, 53-56 (1998).   DOI   ScienceOn
18 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007).   DOI   ScienceOn
19 J. I. Lee and H. T. Jung, Technical status of carbon nanotubes composites, Korean Chem. Eng. Res., 46, 7-14 (2008).   과학기술학회마을
20 D. Y. Kim, K. J. Yun, and Y. S. Lee, Electromagnetic interference shielding characteristics of electroless nickel plated carbon nanotubes, Appl. Chem. Eng., 25, 268-273 (2014).   과학기술학회마을   DOI
21 J. Yang, M. Wu, F. Chen, Z. Fei, and M. Zhong, Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene, J. supercritical fluids, 56, 201-207 (2011).   DOI   ScienceOn
22 S. Park, History of graphene oxide and future direction, Prospectives of industrial chemistry, 16, 1-5 (2013).
23 Y. Kim, S. Cho, S. K. Park, J. D. Jeon, and Y. S. Lee, Electrochemical properties of carbon felt electrode for vanadium redox flow batteries by liquid ammonia treatment, Appl. Chem. Eng., 25, 292-299 (2014).   DOI
24 G. Yang, H. Chena, H. Qin, and Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci., 293, 299-305 (2014).   DOI
25 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
26 T. M. Byrne, X. Gu, P. Hou, F. S. Cannon, N. R. Brown, and C. Nieto-Delgado, Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration, Carbon, 73, 1-12 (2014).   DOI
27 Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011).   DOI
28 J. H. Kim, S. Cho, T. S. Bae, and Y. S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sens. Actuators B, 197, 20-27 (2014).   DOI
29 Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, Jun Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010).   DOI