• 제목/요약/키워드: liquid oxygen

Search Result 673, Processing Time 0.033 seconds

Experimental study on the applicability of liquid air as the refrigerant in artificial ground freezing for subsea tunnels (해저터널을 위한 동결공법 냉매로서의 액화공기 적용성에 대한 실험적 연구)

  • Son, Young-Jin;Choi, Hyeungchul;Moon, Hung-Man;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In this paper, the liquid air was selected as the refrigerant in artificial ground freezing to be used for rapid ground freezing and to reduce the risk of suffocation and the applicability of liquid air was verified. In order to evaluate the stability of the liquid air, the oxygen concentration of mixtures with liquid nitrogen and liquid oxygen was experimentally examined to meet the oxygen concentration criteria in the Occupational Safety and Health Act. In addition, the effects of the mixture ratio of liquid nitrogen and liquid oxygen, pressure and flow rate change in the storage vessel on the oxygen concentration in the liquid air were investigated. As a result, the ratio of liquid nitrogen and liquid oxygen 8: 2 was shown to meet the oxygen concentration standards. Pressure and flow rate change in the storage vessel did not have significant effects on the oxygen concentration in the liquid air.

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Analysis of Liquid Oxygen Feeding System for Pump-Fed Liquid Propulsion Rocket

  • Cho, Nam-Kyung;Kwon, Oh-Sung;Cho, In-Hyun;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.211-215
    • /
    • 2004
  • For design of cryogenic propellant feeding system, one of the main requirements is to meet temperature requirement for satisfying turbo-pump NPSH requirement. In this paper improved method of estimating the thermal stratification in liquid oxygen tank is presented to help design. In the case of liquid rocket using turbo-pump, the inner pressure of liquid oxygen tank is maintained low, so vaporization of liquid oxygen is generally occurred. In this paper, inner process of LOX tank is analyzed by two phase flow modeling. The vaporization rate and required helium mass is investigated.

  • PDF

Performance Test of PSD Oxidizer Drain Valve for KSLV-II (한국형발사체 PSD 산화제 배출밸브 성능시험)

  • Chung, Yonggahp;Han, Sangyeop;Kim, Suengik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1171-1175
    • /
    • 2017
  • Cryogenic helium gas is used as the pressurant for the oxidizer pressurization of DR(Damper Receiver) sphere in the PSD(Pogo Suppression Device) system and liquid oxygen is used as the oxidizer for the propellant in Korea Space Launch Vehicle-II. The helium gas is stored in pressurant cylinders inside the cryogenic liquid oxygen tank and liquid oxygen is stored in the oxidizer tank. In this study, the performance test of PSD liquid oxygen drain valve for KSLV-II was considered.

  • PDF

Design and operation of the oxygen system (산소 시스템의 설계와 운용)

  • Lim, Ha-Young;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.51-54
    • /
    • 2010
  • Physical characteristics of liquid and gaseous oxygen and the detailed ignition characteristics of oxygen system were introduced. Compatible and non-compatible materials for oxygen were discussed. To ensure the safety operation of the oxygen system, one of the most important point, cleaning, was reviewed. To design the gaseous and liquid oxygen system, key points were introduced. To safe operation, the operating procedure and considerations were introduced.

  • PDF

Quality control for the liquid oxygen as the oxidizer of launcher and the liquid oxygen filling system as ground facility (액체산소를 사용하는 발사체 산화제 및 산화제 지상공급시스템의 품질관리)

  • Kim, Ji-Hoon;Yoo, Byung-Il;Kang, Sun-Il;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.309-312
    • /
    • 2009
  • The various hazards should be eliminated before operations for the successful launches or tests. Using the contaminated propellants is one of the causes for the launch and test failures. Especially, the systems using liquid oxygen as an oxidizer have risks about fires and explosions not be forecasted if they are contaminated by oil, water and mechanical impurities. The procedure for the quality control of the liquid oxygen and the liquid oxygen filling system and the lessons learned from the first launch preparation with the system are introduced on this paper.

  • PDF

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

Experimental Study of Liquid Oxygen Sub-cooling by Helium Injection (헬륨분사를 통한 액체산소 과냉각에 관한 실험적 연구)

  • Kwon Oh-Sung;Cho Nam-Kyung;Chung Yong-Gahp;Ha Seong-Up;Lee Joong-Youp;Kim Hyun-Joong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.179-182
    • /
    • 2005
  • Test of liquid oxygen sub-cooling by helium injection, which is one of the method of temperature conditioning of cryogenic propellant in liquid propulsion rocket, is performed. The sub-cooling effect at different He injection flow rate with the same initial liquid oxygen mass is compared. Test results showed liquid oxygen temperature decrease of $5\sim6^{\circ}C$ under test condition. And the required time for cooling is inversely proportional to He injection flow rate.

  • PDF

Oxygen Transfer Characteristics & Pure Oxygen Application Study on Circulation Flow Rate of the JLB (Jet Loop Bioreactor) (Jet 폭기 시스템의 순환유량에 따른 산소전달 특성 및 순산소 적용성 검토)

  • Park, Noh-Back;Song, Yong-Hyo;Pack, June-Gue;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.896-901
    • /
    • 2009
  • In this study, in order to apply the air and pure oxygen in the Jet Loop Reactor (JLB) in which the oxygen transfer rate is high, differentiate the operation mode according to each air flowrate and liquid flowrate and investigate the oxygen transfer characteristic, an experiment was carried out. The oxygen concentration with the air flowrate ($Q_g$) and liquid flowrate ($Q_L$) was identical but the oxygen transfer coefficient ($K_L{\cdot}a$) is linear depending on degree of two factors. The width of an increase is small in $0.1min^{-1}$ when the air flowrate is 0.2 L/min with increasing the liquid flowrate. Whereas, the increment was exposed to be very high for $1.5min^{-1}$ when the air flowrate was 5 L/min. In the experiments using the pure oxygen, it was 30 mg/L of oxygen concentration finally and it was 3.5 times than using the air. But the time reached the saturated concentration was similar to using the air, and $K_L{\cdot}a$ was similar to using the air too. Analysis between two independent variable and oxygen transfer of the correlation is the same model like $K_L{\cdot}a={0.0161Q_L}^{1.5371}{Q_g}^{0.5433}$ using with coefficient non linear regression analysis. It was resulted that the liquid flowrate were approximately three times than air flowrate on effect to oxygen transfer rate.

Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex (한국형발사체 발사대시스템 산화제공급설비 상세설계)

  • Seo, Mansu;Ko, Min-Ho;Sun, Jeong-Woon;Suh, Hyun-Min;Lee, Jae Jun;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, the liquid oxygen filling system (LOXFS) of the launch complex system of Korea Space Launch Vehicle-II (KSLV-II) is introduced based on critical design result by KARI in 2015 to 2016. The function and specification of the main systems of the liquid oxygen filling system, such as the storage tank, the drainage tank, the supply pumping system, the curved heat exchanger with liquid nitrogen, end valve block system, and umbilical connection, are presented.