• Title/Summary/Keyword: liquid limits

Search Result 448, Processing Time 0.022 seconds

Fermentable Sugar Contents of Commercial Medical Foods and Carbohydrate Ingredients (상업용 메디컬푸드 및 탄수화물 급원의 발효성 당류 함량에 관한 연구)

  • Shin, Hee-Chang;Kang, Nam-Hee;Lee, Jang-Woon;Lee, Yoon-Bok;Lee, Kyun-Hee;Oh, Seung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1200-1205
    • /
    • 2015
  • Medical foods are enteral nutrition for patients, but they cause maladaptation symptoms like diarrhea. Although the cause of diarrhea remains unknown, some studies have indicated that the cause of diarrhea is fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP). This is a consideration for medical foods since they are easily fermented by intestinal bacterial. In this study, we estimated the FODMAP contents of commercial medical foods and carbohydrate ingredients. We measured the concentrations of FODMAP in 13 types of different medical foods and five types of carbohydrate ingredients by using high performance liquid chromatography with an evaporative light scattering detector (HPLC-ELSD). The limits of detection of FODMAP were fructose, 0.002; lactose, 0.010; raffinose, 0.003; stachyose, 0.032; 1-kestose, 0.005; nystose, 0.012; and 1-fructofuranosylnystose, 0.003 mg/kg. Limits of quantitation of FODMAP were fructose, 0.008; lactose, 0.033; raffinose, 0.009; stachyose, 0.107; 1-kestose, 0.015; nystose, 0.042; and 1-fructofuranosylnystose, 0.011 mg/kg, respectively. Concentration of FODMAP ranged from 0.428~2.968 g/200 mL. Concentrations of carbohydrate ingredients in FODMAP were chicory fiber, 278.423; soy fiber, 27.467; indigestible maltodextrin, 52.384; maltodextrin (DE10~15), 32.973; and maltodextrin (DE15~20), 50.043 g/kg. Contents of carbohydrates were 19.0~41.0 g/200 mL in commercial medical foods. We expected a correlation between contents of carbohydrates and FODMAP, as carbohydrates included FODMAP. However, we detected a low correlation (r=0.55). Since most commercial medical foods have a similar carbohydrate ingredients and nutritional values, the difference between products was determined by FODMAP contents of carbohydrate ingredients. In this study, we analyzed FODMAP contents of commercial medical foods and carbohydrate ingredients. These results are expected to be utilized as basic data for product development and minimizing maladaptation of medical foods.

Multi-residue Pesticide Analysis in Cereal using Modified QuEChERS Samloe Preparation Method (곡물류 중 잔류농약 다성분 분석을 위한 개선된 QuEChERS 시료 정제법의 개발)

  • Yang, In-Cheol;Hong, Su-Myeong;Kwon, Hye-Young;Kim, Taek-Kyum;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.314-334
    • /
    • 2013
  • This study explored an efficient modified Quick, Easy, Cheap, Effective, Rugged and safe (QuEChERS) method combined with liquid chromatography-electrospray ionization with tandem mass spectrometric detection for the analysis of residues of 76 pesticides in brown rice, barley and corn including acidic sulfonylurea herbicides. Formic acid (1%) acid in acetonitrile and dispersive solid phase extractions used for extraction of pesticides and clean-up of the extract respectively. Two fortified spikes at 50 and 200 ng $g^{-1}$ levels were performed for recovery test. Mean recoveries of majority of pesticides at two spike levels ranged from 73.2 to 132.2, 80.9 to 136.8, 66.6 to 143.5 for brown rice, barley and corn respectively with standard error (CV) less than 10%. Good linearity of calibration curves were achieved with $R^2$ > 0.9907 within the observed concentration ranged. The modified method also provided satisfactory results for sulfonylurea herbicides. The method was applied to the determination of residues of target pesticides in real samples. A total of 26 pesticides in 36 out of 98 tasted samples were observed. The highest concentration was observed for tricyclazole at 1.17 mg $kg^{-1}$ in brown rice. This pesticide in two brown rice samples exceeded their MRLs regulated for rice in republic of Korea. Except tricyclazole none of the observed pesticides' concentration was higher than their MRLs. The results reveal that the method is effectively applicable to routine analysis of residues of target pesticides in brown rice, barley and corn.

Analysis of ethyl glucuronide (EtG) in Hair for the diagnosis of chronic alcohol abuse of Korean (한국인의 만성 알코올 중독 진단을 위한 모발에서 Ethyl Glucuronide (EtG) 분석법 연구)

  • Gong, Bokyoung;Jo, Young-Hoon;Ju, Soyeong;Min, Ji-Sook;Kwon, Mia
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.151-158
    • /
    • 2020
  • Alcohol, which can easily be obtained in the same way as ordinary beverages, is harmful enough to cause death due to excessive drinking and chronic alcohol intake, so it is important to maintain a proper amount of drinking and healthy drinking habits. In addition, the incidence of behavioral disturbances and impaired judgments that can be caused by chronic alcohol drinking of more than adequate amounts of alcohol is also significant. Accordingly it is very useful for forensic science to check whether the person involved is drunken or is alcoholism state in various accidents. Currently, in Korea, alcohol consumption is determined by detecting the level of alcohol or alcohol metabolism 'ethyl glucuronide (EtG)' in blood or urine samples. However, analysis of alcohol or EtG in blood or urine can only provide information about the current state of alcohol consumption because of a narrow window of detection time. Therefore, it is important to analyze the EtG as a long-term direct alcohol metabolite bio-marker in human hair and to investigate relationship between alcohol consumption and EtG concentration for the evaluation of chronic ethanol consumption. In this study, we established an analytical method for the detection of EtG in Korean hair efficiently and validated selectivity, linearity, limits of detection (LOD), limits of quantification (LOQ), matrix effect, recovery, process efficiency, accuracy and precision using liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, the assay performance was evaluated in Korean social drinker's hair and the postmortem hair of a chronic alcoholism. The results of this study can be useful in monitoring the alcohol abuse of Korean in clinical cases and legal procedures related to custody and provide a useful tool to evaluate postmortem diagnosis of alcoholic ketoacidosis in forensics.

Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape (포도(Vitis vinifera L.) 중 Pyrimethanil 및 Methoxyfenozide의 생산단계 잔류허용기준 설정)

  • Kim, Ji Yoon;Woo, Min Ji;Hur, Kyung Jin;Manoharan, Saravanan;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • The present study was aimed to predict the pre-harvest residue limits (PHRLs) of pyrimethanil (fungicide) and methoxyfenozide (insecticide) in grape, and to estimate their biological half-lives and residual characteristics. The pesticides were sprayed once on grape in two different fields 10 days before harvest. At the end of 0, 1, 2, 3, 5, 7 and 10 days after application, samples were harvested for further analysis. The residual pesticides were extracted with acetonitrile and partitioned with dichloromethane, and the high-performance liquid chromatography with diode array detector (HPLC/DAD) was employed for the residue analysis. The results obtained in the present study show that the limit of detection of both pesticides were found to be $0.01mg\;kg^{-1}$. The recoveries of these pesticides were ranged between 80.6% and 102.5% with coefficient of variation lower than 10%. The biological half-lives of both pesticides were observed in field 1 and field 2 which shows 7.7 and 7.4 days for pyrimethanil and 5.1 and 6.1 days for methoxyfenozide, respectively. Further, the PHRL of pyrimethanil and methoxyfenozide was found to be $8.90mg\;kg^{-1}$ and $5.51mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggests that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when grape is harvested.

Simultaneous Analysis for Veterinary Drug Residues in Honey by HPLC/MS/MS (HPLC-MS/MS를 이용한 벌꿀 중 동물용의약품 동시분석방법 연구)

  • Kim, Jong-Hwa;Moon, Sun-Ea;Kim, Ki-Yu;Jung, You-Jung;Lee, Chang-Hee;Ku, Eun-Jung;Yoon, Mi-Hye;Lee, Jong-Bok
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.94-98
    • /
    • 2016
  • This study was conducted to establish the simultaneous analysis method for veterinary drug residues in honey by high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The eleven targeting veterinary drugs with honey test method in Korean Food Standards Codex were divided into Group 1 (streptomycine dihydrostreptomycine, neomycine) and Group 2 (oxytetracycline, enrofloxacin, ciprofloxacin, cymiazole, chloramphenicol, amitraz, coumaphos, fluvalinate) to be analyzed simultaneously. From the results, the retention time (RT) of the targeting drugs was within 15 min, the range of detection limits was 0.0056 to $0.0643{\mu}g/g$ and the range of quantification limits was 0.0169 to $0.1948{\mu}g/g$. The coefficients of determination ($R^2$) for Group 1 ($0.05{\sim}1.0{\mu}g/mL$) and Group 2 ($0.01{\sim}1.0{\mu}g/mL$) were 0.9917~0.9987 and 0.9923~1.000 respectively, and showed the good linearity. The recovery rates for Group 1 (final conc. $0.25{\mu}g/g$) and Group 2 (final conc. $1.0{\mu}g/g$) were 65.1~80.6% and 64.2~90.3% respectively. Also, the analysis results of inter day (n = 3) and intra day (n = 6) RSD (%) for area and retention time showed that the RSD (%) for area and retention time was below 10.92% and 1.57%. Therefore, the simultaneous analysis method of this study is evaluated to be a good test method for veterinary drug residues in honey.

Analysis and Safety Assessment of Antioxidants Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants (폴리에틸렌 및 폴리프로필렌 기구·용기·포장 유래 산화방지제 분석 및 안전성평가)

  • Choi, Heeju;Choi, Jae Chun;Bae, In-Ae;Park, Se-Jong;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.424-433
    • /
    • 2017
  • Antioxidants are used in the manufacturing of commercial food packages made of polyolefin plastic such as polyethylene and polypropylene for the purpose to delay the oxidation reaction of the polymer due to oxygen or traces of ozone in the atmosphere. Additives in plastics may be migrated from the packaging materials into foods, thereby presenting a potential health risk to the consumer. Therefore, it is necessary to determine migration level of antioxidants from food packaging materials to foodstuffs in order to take proactive management. In this study, we have developed a method for the analysis of 10 antioxidants, which are butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), Cyanox 2246, 425 and 1790, Irgafos 168, and Irganox 1010, 1330, 3114 and 1076, migrated from the food packaging materials into four food simulants for aqueous, acidic, alcoholic and fatty foods. The antioxidants were determined by reversed-phase high-performance liquid chromatograph-ultraviolet detector with 276 nm after solid-phase extraction with a hydrophilic-lipophilic balance (HLB) cartridge or dilution with isopropanol. The analytical method showed a good linearity of coefficient ($R^2{\geq}0.99$), limits of detection (0.11~0.41 mg/L), and limits of quantification (0.34~1.24 mg/L). The recoveries of antioxidants spiked to four food simulants ranged from 71.3% to 109.4%. The migrated antioxidants in this study were within the safety levels that resulted from the safety assessment by the estimated daily intake to the tolerable daily intake.

Simultaneous Determination of UV Absorbers Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants by HPLC-UVD (HPLC-UVD를 이용한 폴리에틸렌, 폴리프로필렌 기구 및 용기·포장 유래 자외선흡수제 동시분석법)

  • Choi, Heeju;Choi, Jae Chun;Bae, In-Ae;Lee, Chanyong;Park, Se-Jong;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.434-442
    • /
    • 2017
  • The UV light in sunlight breaks down the chemical bonds in a polyolefin polymer through a process called photodegradation, ultimately causing cracking, chalking, colour changes, and loss of physical properties such as impact strength, tensile strength, elongation, and others. UV absorbers are used to prevent or terminate the oxidation of plastics by UV light. They are receptive to UV radiation and dissipate the energy harmlessly as heat. Benzotriazoles and benzophenones are used mainly in polyolefins such as polyethylene and polypropylene. In this study, we have developed a method for the analysis of 12 UV absorbers, which are Uvinul 3000, Cyasorb UV 24, Uvinul 3040, Tinuvin 312 and P, Seesorb 202, Chimassorb 81, Tinuvin 329, 234, 326, 328 and 327, migrated from the food packaging materials into four food simulants for aqueous, acidic, alcoholic and fatty foods. The UV absorbers in food simulants were determined by reversed-phase high performance liquid chromatograph-ultraviolet detector with 310 nm after solid-phase extraction with a hydrophilic-lipophilic balance (HLB) cartridge or dilution with isopropanol. The analytical method showed a good linearity of coefficient ($R^2{\geq}0.99$), limits of detection (0.049~0.370 mg/L), and limits of quantification (0.149~1.120 mg/L). The recoveries of UV absorbers spiked to four food simulants ranged from 70.05% to 110.13%. The developed method would be used as a reliable tool to determine concentrations of the migrated UV absorbers.

Occurrence of Mycotoxins in Korean Grains and Their Simultaneous Analysis (한국산 곡류에서의 곰팡이독소 오염현황 및 동시분석)

  • Kim, Dong-Ho;Jang, Han-Sub;Choi, Gyu-Il;Kim, Hyun-Jung;Kim, Ho-Jin;Kim, Hyo-Lin;Cho, Hyun-Jung;Lee, Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Eleven mycotoxins, including aflatoxins, ochratoxin A, fumonisins, zearalenone, T-2 toxin, deoxynivalenol, and HT-2 toxin, were analyzed simultaneously in rice, barley, and maize produced in 2011 by liquid chromatography coupled with triple quadrupole mass spectrometry (LC/MS/MS). Limits of detection (LOD) are 0.2 ${\mu}g/kg$ for aflatoxin $B_1$, and $G_1$, 0.3 ${\mu}g/kg$ for aflatoxins $B_2$, and $G_2$, 0.1 ${\mu}g/kg$ for ochratoxin, fumonisins, zearalenone, and T-2 toxin and 3.0 ${\mu}g/kg$ for deoxynivalenol and HT-2 toxin. Limits of quantification (LOQ) were 0.6 ${\mu}g/kg$ for aflatoxins $B_1$, and $G_1$, 0.9 ${\mu}g/kg$ for aflatoxins $B_2$, and $G_2$, 0.3 ${\mu}g/kg$ for ochratoxin, fumonisins, zearalenone, and T-2 toxin and 10.0 ${\mu}g/kg$ for deoxynivalenol and HT-2 toxin. Recoveries for 11 mycotoxins ranged from 70.45 to 111.11%. Fumonisins, deoxynivalenol, and zaeralenone were detected from 0.9 to 334.0 ${\mu}g/kg$ in the polished rice, barley and raw corn cultivated in Korea. Other mycotoxins were not detected. Deoxynivalenol contamination was mainly found in barley (24 out of 43 samples) and the average value in positive samples was 113.30 ${\mu}g/kg$.

A Study on the Analysis of Five Artificial Sweetners in Beverages by HPLC/MS/MS (HPLC/MS/MS를 이용한 음료류 중 인공감미료 동시분석에 관한 연구)

  • Lee, Seong-Bong;Yong, Kum-Chan;Hwang, Sun-Il;Kim, Young-Su;Jung, You-Jung;Seo, Mi-Young;Lee, Chang-Hee;Sung, Jin-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • A method for analysis of five artificial sweetners (sodium saccharin, aspartame, acesulfame-K, sucralose, cyclamate) in beverage samples was developed using high-performance liquid chromatography/triple quadrupole mass spectrometry (HPLC/MS/MS). The method uses a single-step dilution for sample preperation. Seperation was achieved on a $C_{18}$ column ($2.1{\times}150mm$, $3.5{\mu}m$) with A- 2% methanol (1 mM ammonium acetate), B-95% methanol (1 mM ammonium acetate) as mobile phase with gradient mode. The quantitation of target compounds was performed by external calibration in selected reaction monitorning (SRM) mode. The coefficient of determination of calibration curve for sodium saccharin, aspartame, acesulfame-K, sucralose and cyclamate were 0.9957, 0.9991, 0.9943, 0.9982 and 0.9948, respectively. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.001~0.022 mg/L and 0.004~0.073 mg/L, repectively. Recoveries for beverage samples were in the range of 92.76~113.50% with RSD < 10.91%. The method has applied to the determination of the five sweetners in 102 beverage samples. Three artificial sweetners-aspartame, acesulfame-K, sucralose were detected from 42 samples. Sodium saccharin and cyclamate were not detected in all samples.

Analytical Method Development for Determination of Silymarin by LC-MS/MS for Related Health Functional Foods (LC-MS/MS를 이용한 건강기능식품 중 실리마린 분석법 연구)

  • Oh, Mihyune;Lee, Jin Hee;Kim, Sang-A;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2018
  • The Ministry of Food and Drug Safety (MFDS) is amending its test methods for the use of health functional foods (dietary food supplement), in order to establish regulatory standards and specifications in Korea. In this regard, we continue to pursue and perform our research on the analytical method development for the items being researched and reviewed. In this study, we have developed a sensitive and selective test method that could simultaneously separate and determinate six major bioactive flavonolignans in silymarin, which are based on the use of a liquid chromatographic-tandem mass spectrometry (LC-MS/MS). The standard calibration curves presented a linearity effect with the correlation coefficient ($r^2$) > 0.999. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of $0.3{\sim}9.0{\mu}g/L$ and $0.8{\sim}27.3{\mu}g/L$, respectively. The recovery results ranged between 96.2~98.6% at 3 different concentration levels, and its relative standard deviations (RSDs) were less than 5% as noted in this study. The proposed analytical method was characterized with a noted high resolution of the individual silymarin constituents, and the assay was fully validated as well. Our research can provide a significant scientific evidence that can be useful to amend the silymarin test method for the Health Functional Food Code.