Browse > Article
http://dx.doi.org/10.9721/KJFST.2013.45.1.111

Occurrence of Mycotoxins in Korean Grains and Their Simultaneous Analysis  

Kim, Dong-Ho (National Agricultural Products Quality Management Service)
Jang, Han-Sub (National Agricultural Products Quality Management Service)
Choi, Gyu-Il (National Agricultural Products Quality Management Service)
Kim, Hyun-Jung (National Agricultural Products Quality Management Service)
Kim, Ho-Jin (National Agricultural Products Quality Management Service)
Kim, Hyo-Lin (National Agricultural Products Quality Management Service)
Cho, Hyun-Jung (National Agricultural Products Quality Management Service)
Lee, Chan (Chung-Ang University)
Publication Information
Korean Journal of Food Science and Technology / v.45, no.1, 2013 , pp. 111-119 More about this Journal
Abstract
Eleven mycotoxins, including aflatoxins, ochratoxin A, fumonisins, zearalenone, T-2 toxin, deoxynivalenol, and HT-2 toxin, were analyzed simultaneously in rice, barley, and maize produced in 2011 by liquid chromatography coupled with triple quadrupole mass spectrometry (LC/MS/MS). Limits of detection (LOD) are 0.2 ${\mu}g/kg$ for aflatoxin $B_1$, and $G_1$, 0.3 ${\mu}g/kg$ for aflatoxins $B_2$, and $G_2$, 0.1 ${\mu}g/kg$ for ochratoxin, fumonisins, zearalenone, and T-2 toxin and 3.0 ${\mu}g/kg$ for deoxynivalenol and HT-2 toxin. Limits of quantification (LOQ) were 0.6 ${\mu}g/kg$ for aflatoxins $B_1$, and $G_1$, 0.9 ${\mu}g/kg$ for aflatoxins $B_2$, and $G_2$, 0.3 ${\mu}g/kg$ for ochratoxin, fumonisins, zearalenone, and T-2 toxin and 10.0 ${\mu}g/kg$ for deoxynivalenol and HT-2 toxin. Recoveries for 11 mycotoxins ranged from 70.45 to 111.11%. Fumonisins, deoxynivalenol, and zaeralenone were detected from 0.9 to 334.0 ${\mu}g/kg$ in the polished rice, barley and raw corn cultivated in Korea. Other mycotoxins were not detected. Deoxynivalenol contamination was mainly found in barley (24 out of 43 samples) and the average value in positive samples was 113.30 ${\mu}g/kg$.
Keywords
mycotoxins; simultaneous analysis; rice; barley; corn;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Binder EM, Tan LM, Chin LJ, Handl J, Richard J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Tech. 137: 265-282 (2007)   DOI   ScienceOn
2 D'Mello JPF, Macdonald AMC. Mycotoxins. Anim. Feed Sci. Tech. 69: 155-166 (1997)   DOI   ScienceOn
3 Flannigan B. Mycotoxins. In: Toxic Substances in Crop Plants. The Royal Society of Chemistry, Cambridge, UK. pp. 226-257 (1991)
4 Decastelli L, Lai J, Gramaglia M, Monaco A, Nachtmann C, Oldano F, Ruffer M, Sezian A. Bandirola C. Aflatoxins occurance in milk and feed in Northern Italy during 2004-2005. Food Control 18: 1263-1266 (2007)   DOI   ScienceOn
5 Schlatter CH, Struder-Rohr J, Rasonyi TH. Carcinogenicity and kinetic aspects of ochratoxin A. Food Addit. Contam. 13: 43-44 (1996)
6 D'Mello JPF, Placinta CM, Macdonald AMC. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Tech. 80: 183-205 (1999)   DOI   ScienceOn
7 Ren Y, Zhang Y, Shao S, Cai Z, Feng L, Pan H, Wang Z. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 1143: 48-64 (2007)   DOI   ScienceOn
8 Park JW, Chung SH, Kim YB. Ochratoxin A in Korean food commodities: Occurrence and safety evaluation. J. Agr. Food Chem. 53: 4637-4642 (2005)   DOI   ScienceOn
9 Ok HE, Kim HJ, Cho TY, Oh KS, Chun HS. Determination of deoxynivalenol in cereal-based foods and estimation of dietary exposure. J. Toxicol. Env. Heal. A 72: 1424-1430 (2009)   DOI   ScienceOn
10 Boeira LS, Bryce JH, Stewart GG, Flannigan B. The effect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenone, and fumonisin B1) on growth of brewing yeasts. J. Appl. Microbiol. 88: 388-403 (2000)   DOI   ScienceOn
11 Grenier B, Loureiro-Bracarense AP, Lucioli J, Pacheco GD, Cossalter AM, Moll WD, Schatzmayr G, Oswald IP. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol. Nutr. Food Res. 55: 761-771 (2011)   DOI   ScienceOn
12 Tammer B, Lehmann I, Nieber K, Altenburger R. Combined effects of mycotoxin mixtures on human T cell function. Toxicol. Lett. 170: 124-133 (2007)   DOI   ScienceOn
13 Verma J, Johri TS, Swain BK, Ameena S. Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. Brit. Poultry Sci. 45: 512-518 (2004)   DOI   ScienceOn
14 Harvey RB, Edrington TS, Kubena LF, Elissalde MH, Rottinghaus GE. Influence of aflatoxin and fumonisin B1-containing culture material on growing barrows. Am. J. Vet. Res. 56: 1668- 1672 (1995)
15 Ruiz MJ, Mackov P, Juan-Garca A, Font G. Cytotoxic effects of mycotoxin combinations in mammalian kidney cells. Food Chem. Toxicol. 49: 2718-2724 (2011)   DOI   ScienceOn
16 Creppy EE, Chiarappa P, Baudrimont I, Borracci P, Moukha S, Carrat MR. Synergistic effects of fumonisin B1 and ochratoxin A: are in vitro cytotoxicity data predictive of in vivo acute toxicity? Toxicology 201: 115-123 (2004)   DOI   ScienceOn
17 Berek L, Petri IB, Mesterhzy A, Tren J, Molnr J. Effects of mycotoxins on human immune functions in vitro. Toxicol. In Vitro. 15: 25-30 (2001)   DOI   ScienceOn
18 Kouadio JH, Dano SD, Moukha S, Mobio TA, Creppy EE. Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon 49: 306-317 (2007)   DOI   ScienceOn
19 Klaric MS, Rumora L, Ljubanovic D, Pepeljnjak S. Cytotoxicity and apoptosis induced by fumonisin B1, beauvericin and ochratoxin A in porcine kidney PK15 cells: Effects of individual and combined treatment. Arch. Toxicol. 82: 247-255 (2008)   DOI   ScienceOn
20 Lattanzio VM, Solfrizzo M, Powers S, Visconti A. Simultaneous determination of aflatoxins, ochratoxin A, and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Commun. Mass Sp. 21: 3253-3261 (2007)   DOI   ScienceOn
21 Kltzel M, Lauber U, Humpf HU. A new solid phase extraction clean-up method for the determination of 12 type A and B trichothecenes in cereals and cereal-based food by LC-MS/MS. Mol. Nutr. Food Res. 50: 261-269 (2006)   DOI   ScienceOn
22 Lee T, Lee SH, Lee SH, Shin JY, Yun JC, Lee YW, Ryu JG. Occurrence of Fusarium mycotoxins in rice and its milling byproducts in Korea. J. Food Protect. 74: 1169-1174 (2011)   DOI   ScienceOn
23 Ok HE, Chang HJ, Choi SW, Lee NR, Kim HJ, Koo MS, Chun HS. Co-occurrence of deoxynivalenol and zearalenone in cereals and their products. J. Fd. Hyg. Safety 22: 375-381 (2007)   과학기술학회마을
24 Seo E, Yoon Y, Kim K, Shim WB, Kuzmina N, Oh KS, Lee JO, Kim DS, Suh J, Lee SH, Chung KH, Chung DH. Fumonisins B1 and B2 in agricultural products consumed in South Korea: An exposure assessment. J. Food Protect. 72: 436-440 (2009)
25 Kim JC, Kang HJ, Lee DH, Lee YW, Yoshizawa T. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Appl. Environ. Microb. 59: 3798-3802 (1993)
26 Park JW, Kim EK, Shon DH, Kim YB. Natural co-occurrence of aflatoxin B1, fumonisin B1 and ochratoxin A in barley and corn foods from Korea. Food Addit. Contam. 19: 1073-1080 (2002)   DOI   ScienceOn
27 Tanaka K, Sago Y, Zheng Y, Nakagawa H, Kushiro M. Mycotoxins in rice. Int. J. Food Microbiol. 119: 59-66 (2007)   DOI   ScienceOn
28 Sugita-Konishi Y, Nakajima M, Tabata S, Ishikuro E, Tanaka T, Norizuki H, Itoh Y, Aoyama K, Fujita K, Kai S, Kumagai S. Occurrence of aflatoxins, ochratoxin A, and fumonisins in retail foods in Japan. J. Food Protect. 69: 1365-1370 (2006)
29 Makun HA, Dutton MF, Njobeh PB, Mwanza M, Kabiru AY. Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Res. 27: 97-104 (2011)   DOI   ScienceOn