• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.028 seconds

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

Simultaneous Analysis of Bioactive Metabolites from Caulis Lonicera japonica by HPLC-DAD-ion trap-MS (HPLC-DAD-ion trap-MS를 이용한 인동 생리활성 물질의 동시분석)

  • Ryu, Sung-Kwang;Won, Tae-Hyung;Kang, Sam-Sik;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2010
  • A high-performance liquid chromatography (HPLC) with DAD detector and electrospray ionization mass spectrometry (ESI-MS) was established for the simultaneous determination of coniferin (1), loganic acid (2), demethylsecologanol (3), sweroside (4) and loganin (5) from caulis Lonicera joponica. The optimal chromatographic conditions were obtained on an ODS column ($5{\mu}m$, $4.6{\times}150mm$) with the column temperature $35^{\circ}C$. The mobile phase was composed of (A) water with 0.1% formic acid and (B) methanol with 0.1% formic acid using a gradient elution, the flow rate was 0.3 ml/min. Detection wavelength was set at 254 nm. All calibration curves showed good linear regression ($r^2$>0.998) within test ranges. The developed method provided satisfactory precision and accuracy with overall intra-day and interday variations of 0.16~3.28% and 0.14~1.99%, respectively, and the overall recoveries of 99.39~105.89% for the five compounds analyzed. The verified method was successfully applied to quantitative determination of the two types (phenolic compounds and iridoids) of bioactive compounds in 24 commercial caulis L. japonica samples from different markets in Korea and China. The analytical results demonstrated that the contents of the five analytes vary significantly with sources.

Evaluations on the Characteristics of Pressure Drop f3r the Design of Intravascular Artificial Lung Assist Device (혈관 내 폐 보조장치 설계를 위한 압력손실 특성 평가)

  • 김기범;권대규;박재관;정경락;이삼철
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 2003
  • In this study, we try to formularize simultaneous equations to make a prediction about pressure drop for designing intravascular artificial lung assist device. Designing parameters to predict the effect of pressure drop and designed modules under various conditions were studied through an experimental modeling before inserting the artificial lung assist device into as venous. We measured pressure drop in various number of hollow fiber membranes, when the inside diameter of shell is fixed in 3 cm, and tried to develope the prediction equations by curve fitting based on the correlation between the experimental pressure drop and the device frontal area or packing density. The results showed that pressure drop increased with 2nd order functional formula as the liquid flow rate, the frontal area, and the packing density increased. Also, we can estimate the pressure drop as a function of the frontal area or packing density. The pressure drop obtained from the experiment was similar to that from the equation, confirming the usefulness of the equation.

Study on the Generation of Chemically Active Species Using Gas-liquid Mixing Plasma Discharging System (기-액 혼합 플라즈마 방전 시스템에서 화학적 활성종의 생성)

  • Kim, DongSeog;Park, YoungSeek
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.394-402
    • /
    • 2014
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and oxygen flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the 2nd voltage (4 kV to 15 kV) was increase, RNO degradation was increased and, generated $H_2O_2$ and $O_3$ concentration were increased. The conductivity of the solution was not influencing the RNO degradation, $H_2O_2$ and $O_3$ generation. The pH effect on RNO degradation was not high. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (중공사형 분리막에 대한 직접접촉식 막분리 공정의 수치해석)

  • Shin, Ho-Chul;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Membrane distillation (MD) is a separation process which higher vapor pressure components are evaporated in mixed liquid solution through hydrophobic membrane with 0.1 or $0.5{\mu}m$ pore size. In this study, direct contact membrane distillation process for hollow fiber module were interpreted numerically using the "COMSOL Multiphysics" software. The variables for the system were temperatures and flow rates of lumen and shell side solutions. The permeate flux increased from 1.0 to $3.8L/m^2{\cdot}hr$ as temperature of the feed solution for lumen increased from 30 to $50^{\circ}C$. However the effect of shell solution temperature on permeate flux was relatively low. Also, the optimum velocity of lumen feed was obtained at 0.15 m/s ($Re_L=135$) by considering MD permeate flux as well as operating pressure loss.

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube (공기주입 노즐관이 장착된 관형막의 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF

Simultaneous Determination of Doxifluridine and 5-FU in Liver and Intestine Tissue Using LC/MS/MS (LC/MS/MS를 이용한 원숭이 및 비글견의 간 및 장관 조직에서의 Doxifluridine과 대사체 5-FU 동시분석법 개발)

  • Woo, Young-Ah;Kim, Ghee-Hwan;Jeong, Eun-Ju;Kim, Choong-Yong
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • A liquid chromatographic method with tandom spectrometric detection (LC/MS/MS) for the simultaneous determination of doxifluridine and its active metabolite, 5-fluorouracil (5-FU) was developed over the concentration range of $5{\sim}2000$ ng/ml, respectively. Doxifluridine, 5-FU and internal standard, 5-chlorouracil (5-CU), were extracted from liver and intestine tissue via protein precipitation. Acetonitrile was used as the extraction solvent and the supernatant was evaporated and reconstructed in mobile phase. Optimum chromatographic separation was achieved on a Agilent Zorbax $C_{18}$ ($100\;mm{\times}2.1\;mm$, $3.5\;{\mu}m$) column with mobile phase run in isocratic with methanol : water (20 : 80, v/v). The flow rate was 0.2 ml/min with total cycle time of 5 min. The lower limit of quantification was validated at 5.0 ng/ml of liver and intestine tissue, for both doxifluridine and 5-FU, respectively. The intra-day and inter-day precision and accuracy of quality control (QC) samples were <11% coefficient of variation and <7% relative error from theoretical concentration for both analytes. In addition, the special designed stability study was performed, because the metabolism of doxifluridine occurs spontaneously even in ice bath for monkey liver. The stability of doxifluridine in liver and intestine of monkey and beagle dog was compared. It was found that bioanalytical validation could not be performed for the monkey liver; however, beagle dog's liver has relatively low speed of metabolism compared to monkey liver and instead of monkey liver, beagle dog's liver could be used for the validation. Bioanalytical validation could be performed in monkey intestine. Eventually, this developed method for liver and intestine will be useful in support of the toxicokinetic and pharmacokinetic studies of doxifluridine and 5-FU.

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.

Design and Evaluation of Vaned Pipe Bends of Liquid Propellant for Satellite Launch Vehicles (소형위성 발사체용 액체 추진제 곡관 배관 설계 및 유동 성능 해석)

  • Lee Hee Joon;Han Sang Yeop;Ha Sung Up;Kim Young Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The use of pipe-bends brings about non-uniform flows at the exit of them due to the velocity difference between inner and outer flows inside the bend. These phenomena may cause turbopump of satellite launch vehicle to run off-design and reduce its efficiency, and also introduce unstable influx of propellants to engine manifold after passing through a turbopump. In order to improve the uniformity of flow at the bend exit, certain turning vanes are set up in the bend pipe normally. Correspondingly the design is an $90^{\circ}\;and\;45^{\circ}$ bend pipes that incorporate with the maximum three turning vanes. All designs were analyzed with numerical analysis by solving the Navier-Stokes equations in three dimensions in case of each respective fuel and oxidizer. Evaluations of the vaned pipe bends designs were accomplished by the velocity magnitude distributions and the predicted pressure drops. We could find that the more vaned bend pipe and larger angle pipe under consideration effectively, the more uniform velocity magnitude of the bend and pressure losses.