• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.027 seconds

Air Pollutant Emission Characteristics of a Light Duty Diesel Vehicle Affected by Road Infrastructure Improvement and Traffic flow Changes (도로 기반시설 개선과 교통흐름 변화에 따른 소형 경유자동차의 대기오염물질 배출특성)

  • keel, Jihoon;Lee, Taewoo;Lee, Sangeun;Jung, Sungwoon;Yun, Boseop;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.214-222
    • /
    • 2016
  • Changes in road infrastructure affect driving patterns and pollutant emission characteristics. we analyzed the changes in driving patterns and pollutant emission characteristics of the driving route via measured driving patterns at year 2009 and 2016. Since 2009, there has been an increase in population and traffic demand, including residential areas and industrial facilities. Traffic conditions were improved such as the opening of the highway Inter-Change to Seoul and the construction of underground driveway. As a result, the average vehicle speed increased. More detail comparisons have made on the changes of the underground driveway section and the crossroad section, which are expected to have significant changes in the transportation infrastructure. The vehicle speed distribution of the underground driveway changed from low speed to high speed, and the increase of the time spent at the high speed and high load caused the increase of NOx emissions. The vehicle speed also increased at the crossroad section, and the consequence NOx and $CO_2$ emissions decreased. It is mainly because the decreased time spent at idle, which results from the proper traffic demand management at this area.

Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade (입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향)

  • Jeong, J.S.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

Measurement of Size Distributions of Submicron Electrosprays Using a Freezing Method and an Image Processing Technique (냉각법 및 영상 처리기법을 이용한 서브마이크론 정전분무 액적의 크기분포 측정)

  • Ku, Bon-Ki;Kim, Sang-Soo;Kim, Yu-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.100-106
    • /
    • 2001
  • The size distributions of electrospray droplets from the Taylor cone in cone-jet mode are directly measured by using a freezing method and a transmission electron microscope (TEM) image processing technique. These results are compared with the data obtained by an aerodynamic size spectrometer (TSI Aerosizer DSP). The use of glycerol seeded with NaI and a freezing method make it possible to sample droplets with their original sizes preserved. Since pictures of droplets are taken with TEM with very low vapor pressure of the solution, evaporation is suppressed by freezing. For liquid flow rates below 1 nl/sec, the measured droplet diameters by the TEM image processing technique and the aerosizer are in the range of 0.25 to $0.32{\mu}m$ and 0.30 to $0.40{\mu}m$, respectively. Comparing the TEM data with the aerosizer measurements, it has been revealed that the TEM image processing technique can afford more accurate values of droplet size distributions in the submicron range of 0.1 to $0.4{\mu}m$.

  • PDF

A NUMERICAL ANALYSIS OF THE SLOSHING IN A TANK WITH PLATE/POROUS BAFFLES (판형 및 다공형 배플을 포함한 탱크 내 슬로싱에 대한 유동해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.215-222
    • /
    • 2009
  • In the present study, a numerical analysis on the sloshing in a tank with the harmonic motion was investigated. A VOF method was used for two-phase flows inside the sloshing tank and a source term of the momentum equation was applied for the harmonic motion. This numerical method was verified by comparing its results with the available experimental data. The sloshing in a tank causes the instability of the fluid flows and the fluctuation of the impact pressure on the tank. By these phenomena of the tank sloshing, the sloshing problems such as the failure and the noise of system can be generated. For the reduction of these sloshing problems, the various baffles such as the horizontal/vertical plate baffles and the porous baffles inside the tank are installed. With the installations of these baffles, the characteristics of the liquid behavior in the sloshing tank, the impact pressure on the wall, the amplitude of the free surface near the wall and the sloshing noise were numerically analyzed.

  • PDF

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Analysis of Two-Dimensional Sloshing Problems by a Lagrangian FEM (Lagrangian 유한요소법을 이용한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.21-30
    • /
    • 1990
  • Theoretical and experimental techniques to analyze the two-dimensional liquid motion in a tank are discussed. A Lagrangian FEM with a velocity correction procedure is introduced to describe incompressible free surface fluid flow. A mesh rezoning technique is used to prevent strong distortion of finite elements in the Lagrangian description. Model test technique for sloshing tank is developed using a hydraulic type bench tester. The influence of the variation in the exciting frequency and amplitude are observed for various fill depths. The results of theoretical calculations are compared with those of experiments.

  • PDF

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

The Experimental Study on the Performance of Two-Phase Loop Thermosyphone System for Electronic Equipment Cooling (전자장비 냉각을 위한 2상 순환형 써모사이폰 시스템의 성능에 대한 실험적 연구)

  • Kang, In-Seak;Choi, Dong-Kyu;Kim, Taig-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2004
  • Cooling the electronic equipment is one of the major focal points of the design process and the key to successful product launch. The two-phase loop thermosyphone which is a good candidate among many available options was investigated fur cooling of the high power amplifiers. The system is composed of evaporator which contains 6 parallel cold plates, fan cooled condenser, gas-liquid separator, and interconnecting tubes. Experiments were performed for several refrigerant charging values, hs and as a experiment result, the optimum charging value fur this system was proposed. In order to optimize the system design, the operating cycle pressure and inlet/outlet temperatures of evaporator and condenser are measured and analyzed. The effect of the three parameters such as flow rate and temperature of condenser cooling air, and thermal load on the evaporator are investigated. The lower the operating pressure and the cycle temperatures are also better to prevent the leakage of the system. The system invesigated in this paper can be directly used for cooling of a real unmanned wireless communication station.

Antitumor Activities of Sea Staghorn (Codium fragile) against CT-26 Cells

  • Kim, Kil-Nam;Kim, Soo-Hyun;Kim, Won-Suk;Kang, Sung-Myung;Lee, Ki-Wan;Lee, Wook-Jae;Park, Soo-Yeong;Kim, Se-Kwon;Jeon, You-Jin
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.976-982
    • /
    • 2008
  • The 10 species of marine green algae was collected from Jejudo(Island) in Korea. Methanolic and aqueous extracts were prepared and screened for inhibition activities against tumor cell growth. Of the tested samples, the sea staghorn (Codium fragile) aqueous extract (CFAE) showed the highest activity on CT-26 cell growth. Therefore, CFAE was selected for further experiments and the possibility to induce apoptosis by the CFAE was investigated. Flow cytometric analysis revealed that it dose-dependently increased apoptotic cells with hypodiploid DNA contents in CT-26 cell line. These results indicated that CFAE can suppress the growth of CT-26 cells through apoptosis. The CFAE decreased the protein expression of anti-apoptotic Bcl-xL and led to the activation of caspase-3 and -7. A crude polysaccharide was separated from CFAE and it mainly constituted with 61.2% galactose and 30.5% arabinose as analyzed by high performance liquid chromatography (HPLC).

HPLC Chromatographic Methods for Simultaneous Determination of Pholcodine and Ephedrine HCI with Other Active Ingredients in Antitussive-Antihistamine Oral Liquid Formulations

  • Abdallah, Rokia M.
    • Natural Product Sciences
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2006
  • A description of simple, isocratic and precise reversed phase HPLC methods is given for simultaneous quantification of pholcodine and ephedrine hydrochloride together with either carbinoxamine maleate or terfenadine in antitussive-antihistaminic oral pharmaceutical formulations. Separations were carried out on X-Terra and symmetry shield C18 column $(250\;{\times}\;4.6\;mm,\;5\;{\mu}m)$. The used isocratic elution systems were either $0.02\;M\;KH_2PO_4-acetonitrile$ in the ratio of 75 : 25 and pH adjusted to 7.70 with orthophosphoric acid or sodium hydroxide, for syrup (method A), or 0.02 octanesulphonic acid sodium salt solution-acetonitrile-acetic acid in the ratio of 75 : 25 : 0.5 for suspension (method B). The elution of both mixtures was achieved with a flow rate of 1 ml/min. Detection was carried out by UV absorbance at wavelengths of 220 and 250 nm for syrup and suspension, respectively. The quantification of the components in synthetic mixtures and actual syrup and suspension were calculated using the internal standard technique with metoclopramide HCl and codeine phosphate as internal standards (IS), respectively. The methods, for both mixtures, were validated and met all the requirements for the quality control analysis recommended by FDA and ICH.