• Title/Summary/Keyword: liquid engine development

Search Result 294, Processing Time 0.024 seconds

Experience Cases of Combustion Instability in Development of Gas Generator for Liquid Rocket Engine (액체로켓엔진 가스발생기 개발에서의 연소불안정 경험 사례)

  • Kim, Munki;Lim, Byoungjik;Kim, Seong-Ku;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.61-64
    • /
    • 2017
  • The gas-generator open cycle is adapted for liquid rocket engine of Korea Space Launch Vehicle-II. The combustion instability can interfere with combustion performance and cause a noise and vibration or carry the potential for serious damage. This study introduces the experience cases of combustion instability in development of the gas generator for liquid rocket engine.

  • PDF

Strain Characteristics of a 75 tonf-class Engine for Ground Firing Test (75톤급 엔진 지상 연소 시험 변형율 특성)

  • Yoo, Jaehan;Kim, Jinhyuk;Jeon, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.126-133
    • /
    • 2018
  • A liquid rocket engine experiences various static loads in flight, such as high pressures due to propellents, thrust and thermal loads due to cryogenic liquid oxygen and combustion gas with extreme vibration. During the engine development stage, structural analyses and investigation on the strain measured from ground firing tests are necessary for determining the structural reliability of the engine. In this study, the strain characteristics, obtained from the ground firing tests of a 75 tonf-class engine, were analyzed.

Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement (한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발)

  • Kim, Jonggyu;Kim, Seong-Ku;Joh, Miok;Ryu, Chulsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • In this study, a high-pressure subsacle thrust chamber was developed to verify the core technology for KSLV-II performance enhancement. The core technologies are the design of an injector for high-pressure combustion, development of a combustion stabilization device using the additive manufacturing technique, and the design and fabrication of mixing head and regeneratively cooled combustion chamber. The core technologies, which have been verified through the development of high-pressure subscale thrust chamber, will be used to develop large engine liquid rocket engine thrust chamber in the future.

A study on the relation between the first stage liquid rocket engine and the launch vehicle capability (1단용 액체로켓엔진과 발사체 운송 능력과의 관련성 연구)

  • Moon, In-Sang;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 2007
  • Since the successful launch of Sputnik 1, a rocket engine was evolved rapidly. The first artificial satellite Sputnik has only 182 lb mass with a size of a basket ball, a modern artificial satellite is over 10 tons. As the size and the mass of an artificial satellite increases, the stronger launch vehicles are required. However, the story is different in the field of the rocket engine development. In the early to mid age of the space race, rocket engine study was focused on the stronger and bigger engine development, but from the 80's the tide has changed. A rocket engine must be strong and also economic. This trend was accelerated from when a rocket launch was used commercially. In this study, a capability of the launch vehicle and engine was investigated to provide a reference for a liquid rocket engine development plan.

  • PDF

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

Development of Thrust Measurement System and Study of Calibration in Liquid Rocket Engine (액체 로켓 엔진에서의 추력 측정 장치 개발과 calibration에 관한 연구)

  • Park, Soo-Hwan;Park, Hee-Ho;Kim, Yoo;Cho, Nam-Choon;Keum, Young-Tag
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • It is very difficult to measure an exact thrust in liquid rocket engine compared to solid rocket motor, however it is very important to estimate a performance of engine for developing rockets. To get a good result, we have to concern about errors of measurement and find a method of calibration. In this research, we developed new thrust measurement system for liquid rocket engine.

Definition of Engine Component Performance Test Range of 75tf Class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.91-97
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

Definition of Engine Component Performance Test Range of 75tf class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

  • PDF

Development of 10ton Thrust Liquid Rocket Engine using LOX+LNG with Turbopump System called CHASE-10 (액체산소와 액체메탄을 사용하며, 고압터보펌프가 장착된 추력 10톤급 액체로켓엔진 CHASE-10의 개발)

  • Kim Kyoung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.181-184
    • /
    • 2006
  • We successfully completed the development test for a 10-ton thrust liquid rocket engine using LOX+LNG (Liquefied Natural Gas, or Methane) with a high performance turbopump system. Resulting from the success of the regenerative-cooling capability using LNG, high pressure-generating capability and gas-generating performance, etc, methane engine with the product name CHASE-10 will be commercialized in the near future.

  • PDF

A Survey for Liquid Propellant Rocket Engine Life Time and Qualification (액체로켓엔진 수명과 인증 사례 연구)

  • Nam, Chang-Ho;Kim, Seung-Han;Kim, Cheul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.115-118
    • /
    • 2009
  • Life time and number of use of liquid propellant rocket engine (LRE) should be carefully defined since those are crucial parameters affecting development costs and period. The present study surveyed the development and qualification records of LRE for space launch vehicles, especially concerning about test numbers and duration. It was shown that a single engine for expendable launch vehicle is tested with tens of ignition and several times duration of flight at least.

  • PDF