• Title/Summary/Keyword: liquid crystalline spinning

Search Result 11, Processing Time 0.02 seconds

Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning

  • Choi, Yong-Mun;Jung, Jin;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Hyeonsu;Ku, Bon-Cheol;Goh, Munju
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.223-232
    • /
    • 2015
  • This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Effect of Cellulose Concentration of Cellulose/[AMIM]Cl Solution on the Liquid Crystalline Spinning

  • Kim, Su-Jin;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.51-51
    • /
    • 2012
  • Cellulose is extremely difficult to dissolve cellulose in water and most common organic solvents due to their stiff molecular structure, close chain packing and intermolecular hydrogen bonds. Recently, cellulose solutions using ionic liquids (ILs) as a green solvent have been known to form cholesteric liquid crystalline phase at high cellulose concentration. In this study, the phase transition and rheological behaviors of concentrated cellulose/[AMIM]Cl solution were investigated using polarized optical microscopy and rheometry. Studies were conducted to characterize the influence of cellulose concentration on the phase transition of the cellulose solution and the mechanical properties of the regenerated fibers spun from the anisotropic cellulose/[AMIM]Cl solutions.

  • PDF

A STUDY ON THE LYOTROPIC LIQUID CRYSTALLINE COPOLYAMIDE

  • Lee, Chul-Joo;Min, Byoung-Gill;Son, Tea-Won;Yoon, Han-Sik
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1987.06b
    • /
    • pp.12-12
    • /
    • 1987
  • To improve the fibrillation phenomenon and processibili to of poly(p-phenyleneterephthalamide) (PPD-T) , a P/E copolyamide was prepared by introducing 4,4'-ethylene dianiline (EDA) into rigid chain backbone. The effects of semi-flexible segment on the liquid crystalline properties were investigated. The EDA, used as a comonomer, was prepared by catalylitic reduction of p,p'-dinitrophenyl , obtained by oxidative coupling of p,p'-dinitrotoluene. Various high molecular weight PIE copolyamides were prepared by low temperature solution polycondensation of terephthaloyl chloride (TPC) with various mixtures of p-phenylene diamine (PPD) and EOA. The PfE copolyamides were completely dissolved in 100% svlfuric acid, and the phase transition of P/E copolyamide-sulfuric acid systems was examined in teams of concentration and temperature. Over the chemical compositions, PIE=911, 812, and 713, solutions of anisotropic single phase were acquired. In particular, the two mixing ratios, 911 and 812, gave a good anisotropic spinning dope.

  • PDF

Processing Characteristic and Liquid Crystalline Phase Behavior of PHB/PEN/PET Ternary Blend

  • Kang, Seong-Wook;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.20-24
    • /
    • 1998
  • Poly(ethylene 2,6-naphthalate) (PEN) has been known since 1948, when its synthesis was first reported by ICI. Co. In spite of its long history. application of PEN is limited as compared with poly(ethylene terephthalate) (PET). because PEN monomer is very expensive, and PEN exhibits relatively high melt viscosity that is not easy for fiber spinning and injection molding.(omitted)

  • PDF

Solid State NMR Study of PAZO-6 and Related Materials

  • Han, Oc Hee;Jin, Jung-Il;Kim, Jong-Sung;Yoon, Yong-Kook;Huh, Sung-Mu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.493-498
    • /
    • 1995
  • PAZO-6 is a new combined type liquid crystalline polymers (LCP) which has two types of mesogens combined non linearly. Ordering of branch mesogen azo group, in PAZO-6 is an important parameter to observe as well as the substitution effect on the backbone. The related small molecules sllch as monomers as well as the polymer itself are studied by solid state NMR techniques. Preliminary $^{13}C$ CP/MAS (cross polarization/ magic angle spinning) spectral results suggest that the azo groups in the monomers are not aligned with themselves. Azo groups in the monomers seem to be poorly ordered between well ordered p-phenylene terephthalate moeities. Similar disordering tendency of the azo group in PAZO-6 is deduced from the overall aromatic carbon peak positions which are not much different from those of the monomer.

  • PDF

The Effect of Extensional Flow on the Morphology of Polyblends Containing a Liquid Crystalline Polymer (액정고분자를 포함한 고분자 블렌드의 형구학적 성질에 대한 신장유동의 효과)

  • 조길원
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.111-117
    • /
    • 1997
  • 대표적인 신장유동의 하나인 방사공정을 통해 액정고분자를 포함한 블렌드 섬유의 신장유동의 특성과 형구학적 성질간의 관계를 고찰하였다. 신장유동에 의해 분산상인 액정 고분자는 미세섬유구조를 바뀌었고 압출온도가 높을수록 더욱 발달된 미세섬유구조를 가졌 다. 이러한 분산상의 미세구조 변화에 대한 설명은 블렌드의 신장유동특성을 나타내는 신장 점도비로서 가능하였다. 즉, 압출온도가 높을수록 방사사선에서 신장변형률속도가 z지고 신 장점도비가 작아지므로 분산상의 신장변형이 더 많이 되었다고 판단된다. 방사이전의블렌드 내의 분산상은 압출온도를달리하여도 모두 구형으로 존재함을 발견하였고 이사실로부터 분 산상의 미세섬유구조는 방사사선에서의 신장변형에 의해 주로 이루어졌음을 확인하였다.

  • PDF