Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.4.223

Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning  

Choi, Yong-Mun (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Jung, Jin (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Hwang, Jun Yeon (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Kim, Seung Min (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Jeong, Hyeonsu (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Ku, Bon-Cheol (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Goh, Munju (Institute of Advanced Composites Materials, Korea Institute of Science and Technology)
Publication Information
Carbon letters / v.16, no.4, 2015 , pp. 223-232 More about this Journal
Abstract
This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.
Keywords
liquid crystal; carbon nanotube; graphene oxide; liquid crystalline spinning; nano-carbon fiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumar P, Maiti UN, Lee KE, Kim SO. Rheological properties of graphene oxide liquid crystal. Carbon, 80, 453 (2014). http://dx.doi.org/10.1016/j.carbon.2014.08.085.   DOI
2 Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2, 571 (2011). http://dx.doi.org/10.1038/ncomms1583.   DOI
3 Lee SH, Lee DH, Lee WJ, Kim SO. Tailored assembly of carbonnanotubes and graphene. Adv Funct Mater, 21, 1338 (2011). http://dx.doi.org/10.1002/adfm.201002048.   DOI
4 Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys, 59, 466 (1860).
5 Hummer WS Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
6 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI
7 Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACSNano, 5, 2908 (2011). http://dx.doi.org/10.1021/nn200069w.   DOI
8 Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO. Graphene oxide liquid crystals. Angew Chem Int Ed, 50, 3043(2011). http://dx.doi.org/10.1002/anie.201004692.   DOI
9 Lei X, Xu Z, Sun H, Wang S, Griesinger C, Peng L, Gao C, Tan RX. Graphene oxide liquid crystals as a versatile and tunable alignment medium for the measurement of residual dipolar couplingsin organic solvents. J Am Chem Soc, 136, 11280 (2014). http://dx.doi.org/10.1021/ja506074a.   DOI
10 de Gennes PG, Prost J. The Physics of Liquid Crystals. 2nd ed.,Oxford University Press, New York, NY (1993).
11 Dalton AB, Stephan C, Coleman JN, McCarthy B, Ajayan PM,Lefrant S, Bernier P, Blau WJ, Byrne HJ. Selective Interactionof a semiconjugated organic polymer with single-wall nanotubes. J Phys Chem B, 104, 10012 (2000). http://dx.doi.org/10.1021/jp002857o.   DOI
12 Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R. Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir, 20, 6085(2004). http://dx.doi.org/10.1021/la049344j.   DOI
13 Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, SunK, Mamedov AA, Wicksted JP, Kotov NA. Aqueous dispersionsof single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc, 127, 3463 (2005). http://dx.doi.org/10.1021/ja045670+.   DOI
14 Takahashi T, Tsunoda K, Yajima H, Ishii T. Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose. Jpn J Appl Phys, 43, 3636 (2004). http://dx.doi.org/10.1143/JJAP.43.3636.   DOI
15 Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE,Adams WW, Hauge RH, Smalley RE, Pasquali M. Phase behaviorand rheology of SWNTs in superacids. Macromolecules, 37, 154(2004). http://dx.doi.org/10.1021/ma0352328.   DOI
16 Yoo HJ, Lee SY, You NH, Lee DS, Yeo H, Choi YM, Goh M,Park J, Akagi K, Cho JW. Dispersion and magnetic field-inducedalignment of functionalized carbon nanotubes in liquid crystals. Synth Met, 181, 10 (2013). http://dx.doi.org/10.1016/j.synthmet.2013.07.023.   DOI
17 Onsager L. The effect of shape on the interaction of colloidal particles. Ann N Y Acad Sci, 51, 627 (1949). http://dx.doi.org/10.1007/s002149900018.   DOI
18 van der Kooij FM, Lekkerkerker HNW. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J Phys Chem B, 102, 7829 (1998). http://dx.doi.org/10.1021/jp981534d.   DOI
19 Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X,Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibersof carbon nanotubes with ultrahigh conductivity. Science, 339, 182 (2013). http://dx.doi.org/10.1126/science.1228061.   DOI
20 Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/10.1038/nature06016.   DOI
21 Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). http://dx.doi.org/10.1126/science.1158877.   DOI
22 Gómez-Navarro C, Burghard M, Kern K. Elastic properties ofchemically derived single graphene sheets. Nano Lett, 8, 2045 (2008). http://dx.doi.org/10.1021/nl801384y.   DOI
23 Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processableaqueous dispersions of graphene nanosheets. Nat Nano technol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI
24 Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). http://dx.doi.org/10.1039/b917103g.   DOI
25 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068.   DOI
26 Segal M. Selling graphene by the ton. Nat Nanotechnol, 4, 612 (2009). http://dx.doi.org/10.1038/nnano.2009.279.   DOI
27 Fraden S, Maret G, Caspar DLD. Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaicvirus. Phys Rev E Stat Nonlin Soft Matter Phys, 48, 2816 (1993). http://dx.doi.org/10.1103/PhysRevE.48.2816.   DOI
28 Flory PJ. Statistical thermodynamics of semi-flexible chainmolecules. Proc Math Phys Sci, 234, 73 (1956). http://dx.doi.org/10.1098/rspa.1956.0015.   DOI
29 Sabba Y, Thomas EL. High-concentration dispersion of single-wallcarbon nanotubes. Macromolecules, 37, 4815 (2004). http://dx.doi.org/10.1021/ma049706u.   DOI
30 Zhang S, Kinloch IA, Windle AH. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbonnanotubes. Nano Lett, 6, 568 (2006). http://dx.doi.org/10.1021/nl0521322.   DOI
31 Miller AF, Donald AM. Surface and interfacial tension of cellulose suspensions. Langmuir, 18, 10155 (2002). http://dx.doi.org/10.1021/la0258300.   DOI
32 Dong XM, Gray DG. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir, 13, 2404 (1997). http://dx.doi.org/10.1021/la960724h.   DOI
33 Hamm M, Elliott JA, Smithson HJ, Windle AH. Multiscale modelling of carbon nanotubes. Mater Res Soc Symp Proc, 788, 623(2003). http://dx.doi.org/10.1557/proc-788-l10.11.   DOI
34 Sakurai T, Tashiro K, Honsho Y, Saeki A, Seki S, Osuka A, Muranaka A, Uchiyama M, Kim J, Ha S, Kato K, Takata M, Aida T. Electron-or hole-transporting nature selected by side-chain directed π-stacking geometry: liquid crystalline fused metalloporphyrin dimers. J Am Chem Soc, 133, 6537 (2011). http://dx.doi.org/10.1021/ja201272t.   DOI
35 Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, WangY, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE,Smalley RE. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 305, 1447 (2004). http://dx.doi.org/10.1126/science.1101398.   DOI
36 Hone J, Whitney M, Zettl A. Thermal conductivity of single-walled carbon nanotubes. Synth Met, 103, 2498 (1999). http://dx.doi.org/10.1016/s0379-6779(98)01070-4.   DOI
37 Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.4613.   DOI
38 Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 19, 3358 (2007). http://dx.doi.org/10.1002/adma.200602966.   DOI
39 Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE. Gas-phase catalytic growth of singlewalled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313, 91 (1999). http://dx.doi.org/10.1016/S0009-2614(99)01029-5.   DOI
40 Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac SciTechnol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721.   DOI
41 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, TománekD, Fischer JE, Smalley RE. Crystalline ropes of metallic carbonnanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.   DOI
42 Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals forhigh-efficiency organic photovoltaics. Science, 293, 1119 (2001).http://dx.doi.org/10.1126/science.293.5532.1119.   DOI
43 Sawamura M, Kawai K, Matsuo Y, Kanie K, Kato T, Nakamura E. Stacking of conical molecules with a fullerene apex into polarcolumns in crystals and liquid crystals. Nature, 419, 702 (2002).http://dx.doi.org/10.1038/nature01110.   DOI
44 Li CZ, Matsuo Y, Nakamura E. Octupole-like supramolecularaggregates of conical iron fullerene complexes into a three-dimensional liquid crystalline lattice. J Am Chem Soc, 132, 15514(2010). http://dx.doi.org/10.1021/ja1073933.   DOI
45 Herwig P, Kayser CW, Müllen K, Spiess HW. Columnar mesophases of alkylated hexa-peri-hexabenzocoronenes with remarkably large phase widths. Adv Mater, 8, 510 (1996). http://dx.doi.org/10.1002/adma.19960080613.   DOI
46 Geng Y, Fechtenköttera A, Müllen K. Star-like substituted hexaarylbenzenes: synthesis and mesomorphic properties. J Mater Chem, 11, 1634 (2001). http://dx.doi.org/10.1039/b101163o.   DOI
47 Grigoriadis C, Haase N, Butt HJ, Müllen K, Floudas G. Negative thermal expansion in discotic liquid crystals of nanographenes. Adv Mater, 22, 1403 (2010). http://dx.doi.org/10.1002/adma.200903264.   DOI
48 de Heer WA, Châtelain A, Ugarte D. A carbon nanotube fieldemission electron source. Science, 270, 1179 (1995). http://dx.doi.org/10.1126/science.270.5239.1179.   DOI
49 Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes: the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.   DOI
50 Xu Z, Gao C. Graphene in Macroscopic Order : Liquid Crystal sand Wet-Spun. Acc. Chem. Res., 47, 1267 (2014). http://dx.doi.org/10.1021/ar4002813.   DOI
51 Xu Z, Sun H, Zhao X, Gao C. Ultra strong fibers assembled from giant graphene oxide sheets. Adv Mater, 25, 188 (2013). http://dx.doi.org/10.1002/adma.201203448.   DOI
52 Xiang C, Young CC, Wang X, Yan Z, Hwang CC, Cerioti G, LinJ, Kono J, Pasquali M, Tour JM. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater, 25, 4592 (2013). http://dx.doi.org/10.1002/adma.201301065.   DOI
53 Jalili R, Aboutalebi SH, Esrafilzadeh D, Shepherd RL, Chen J,Aminorroaya-Yamini S, Konstantinov K, Minett AI, Razal JM,Wallace GG. Scalable one-step wet-spinning of graphene fiber sand yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Funct Mater, 23, 5345 (2013). http://dx.doi.org/10.1002/adfm.201300765.   DOI
54 Kim YS, Kang JH, Kim T, Jung Y, Lee K, Oh JY, Park J, Park CR. Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem Mater, 26, 5549 (2014). http://dx.doi.org/10.1021/cm502614w.   DOI
55 Xu Z, Zhang Y, Li P, Gao C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano, 6, 7103(2012). http://dx.doi.org/10.1021/nn3021772.   DOI
56 Che J, Çagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65 (2000). http://dx.doi.org/10.1088/0957-4484/11/2/305.   DOI
57 Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubesas quantum wires. Nature, 386, 474 (1997). http://dx.doi.org/10.1038/386474a0.   DOI
58 McEuen PL, Fuhrer MS, Park H. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 1, 78 (2002). http://dx.doi.org/10.1109/TNANO.2002.1005429   DOI
59 Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity ofsingle-walled carbon nanotubes. Phys Rev B Condens Matter Mater Phys, 59, R2514 (1999). http://dx.doi.org/10.1103/Phys-RevB.59.R2514.   DOI
60 Rao CNR, Sood AK, Subrahmanyam KS, Govindaral A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 48, 7752 (2009). http://dx.doi.org/10.1002/anie.200901678.   DOI
61 Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183(2007). http://dx.doi.org/10.1038/nmat1849.   DOI
62 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637.   DOI
63 Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotubequantum resistors. Science, 280, 1744 (1998). http://dx.doi.org/10.1126/science.280.5370.1744.   DOI
64 Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N,Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H,Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol, 4, 830 (2009). http://dx.doi.org/10.1038/nnano.2009.302.   DOI
65 Goh M, Matsushita S, Akagi K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal fieldand morphology-retaining carbonization. Chem Soc Rev, 39, 2466(2010). http://dx.doi.org/10.1039/b907990b.   DOI
66 Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M. Helical polyacetylene synthesized with a chiral nematic reaction field. Science, 282, 1683 (1998). http://dx.doi.org/10.1126/science.282.5394.1683.   DOI
67 Goh M, Kyotani M, Akagi K. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field. J Am Chem Soc, 129, 8519(2007). http://dx.doi.org/10.1021/ja070701x.   DOI
68 Goh M, Matsushita T, Kyotani M, Akagi K. Helical polyacetylenes synthesized in helical sense and pitch controllable chiral nematic liquid crystal with unprecedented temperature dependence. Macromolecules, 40, 4762 (2007). http://dx.doi.org/10.1021/ma0703655.   DOI
69 Zhou X, Kang SW, Kumar S, Li Q. Self-assembly of discotic liquid crystal porphyrin into more controllable ordered nanostructuremediated by fluorophobic effect. Liq Cryst, 36, 269 (2009). http://dx.doi.org/10.1080/02678290902846611.   DOI
70 Liu Z, Li Z, Xu Z, Xia Z, Hu X, Kou L, Peng L, Wei Y, Gao C. Wetspun continuous graphene films. Chem Mater, 26, 6786 (2014). http://dx.doi.org/10.1021/cm5033089.   DOI
71 Cao J, Zhang Y, Men C, Sun Y, Wang Z, Zhang X, Li Q. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions. ACS Nano, 8, 4325 (2014). http://dx.doi.org/10.1021/nn4059488.   DOI
72 Bates MA, Frenkel D. Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J Chem Phys, 110, 6553 (1999). http://dx.doi.org/10.1063/1.478558.   DOI
73 Yang X, Guo C, Ji L, Li Y, Tu Y. Liquid crystalline and shear-induced properties of an aqueous solution of graphene oxide sheets. Langmuir, 29, 8103 (2013). http://dx.doi.org/10.1021/la401038c.   DOI
74 Shen TZ, Hong SH, Song JK. Electro-optical switching of graph eneoxide liquid crystals with an extremely large Kerr coefficient. Nat Mater, 13, 394 (2014). http://dx.doi.org/10.1038/nmat3888.   DOI
75 Dan B, Behabtu N, Martinez A, Evans JS, Kosynkin DV, Tour JM, Pasquali M, Smalyukh II. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter, 7, 11154 (2011). http://dx.doi.org/10.1039/c1sm06418e.   DOI
76 Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK. Spontaneous formation of liquid crystals in ultra large graphene oxide dispersions. Adv Funct Mater, 21, 2978 (2011). http://dx.doi.org/10.1002/adfm.201100448.   DOI
77 Jalili R, Aboutalebi SH, Esrafilzadeh D, Konstantinov K, Razal JM, Moulton SE, Wallace GG. Formation and process ability ofliquid crystalline dispersions of graphene oxide. Mater Horiz, 1, 87 (2014). http://dx.doi.org/10.1039/c3mh00050h.   DOI
78 Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M. Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano, 4, 3063 (2010). http://dx.doi.org/10.1021/nn100170f.   DOI
79 Parra-Vasquez ANG, Behabtu N, Green MJ, Pint CL, Young CC,Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M. Spontaneous dissolution of ultralongsingle- and multiwalled carbon nanotubes. ACS Nano, 4, 3969 (2010). http://dx.doi.org/10.1021/nn100864v.   DOI
80 Zhou W, Heiney PA, Fan H, Smalley RE, Fischer JE. Single-walled carbon nanotube-templated crystallization of H2SO4: direct evidence for protonation. J Am Chem Soc, 127, 1640 (2005). http://dx.doi.org/10.1021/ja043131z.   DOI
81 Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B CondensMatter Mater Phys, 58, 14013 (1998). http://dx.doi.org/10.1103/PhysRevB.58.14013.   DOI
82 Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett, 74, 3803 (1999). http://dx.doi.org/10.1063/1.124185.   DOI
83 Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys-Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/Phys-RevLett.84.5552.   DOI
84 Rai PK, Pinnick RA, Parra-Vasquez ANG, Davis VA, SchmidtHK, Hauge RH, Smalley RE, Pasquali M. Isotropic-nematic phasetransition of single-walled carbon nanotubes in strong acids. J AmChem Soc, 128, 591 (2006). http://dx.doi.org/10.1021/ja055847f.   DOI
85 Li Q, Yan H, Ye Y, Zhang J, Liu Z. Defect location of individualsingle-walled carbon nanotubes with a thermal oxidation strategy. J Phys Chem B, 106, 11085 (2002). http://dx.doi.org/10.1021/jp026512c.   DOI
86 Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A,Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, ShonYS, Lee TR, Colbert DT, Smalley RE. Fullerene pipes. Science, 280, 1253 (1998). http://dx.doi.org/10.1126/science.280.5367.1253.   DOI
87 Kuznetsova A, Popova I, Yates JT Jr., Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JG. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS andvibrational spectroscopic studies. J Am Chem Soc, 123, 10699 (2001). http://dx.doi.org/10.1021/ja011021b.   DOI
88 Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 107, 3712 (2003). http://dx.doi.org/10.1021/jp027500u.   DOI
89 Ramesh S, Ericson LM, Davis VA, Saini RK, Kittrell C, Pasquali M, Billups WE, Adams WW, Hauge RH, Smalley RE. Dissolution of pristine single walled carbon nanotubes in superacids bydirect protonation. J Phys Chem B, 108, 8794 (2004). http://dx.doi.org/10.1021/jp036971t.   DOI
90 Song W, Kinloch IA, Windle AH. Nematic liquid crystallinity of multiwall carbon nanotubes. Science, 302, 1363 (2003). http://dx.doi.org/10.1126/science.1089764.   DOI
91 Song W, Windle AH. Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules, 38, 6181(2005). http://dx.doi.org/10.1021/ma047691u.   DOI