• Title/Summary/Keyword: liquid circulation

Search Result 179, Processing Time 0.042 seconds

Study on the heat transfer in the closed-loop of liquid helium

  • Choi, Y.S.;Kim, D.L.;Yang, H.S.;Lee, B.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.43-45
    • /
    • 2008
  • The thermal characteristics of the helium circulation by a cryocooler are presented. This study is motivated mainly by our recent development of a closed-loop cooling system for Cyclotron K120 superconducting magnets without any replenishment of the cryogen. A channel is attached on the outer surface of the magnet form and the liquid helium passes through inside of the channel in order to cool the super conducting coils indirectly. A two-stage cryocooler as a heat sink is located at the top to recondense helium coming from the superconducting magnet form. The heat transfer in the natural circulation loop is discussed and the main dimensions of cooling system are determined.

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

Experimental Performance Study of the Bubble Pump for the Diffusion Absorption Refrigerating System (확산형 흡수식 냉동시스템의 기포펌프 성능실험)

  • 이재효;정의갑;윤재호;정의갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.287-292
    • /
    • 2004
  • An experimental investigation was carried out to study the performance of a bubble pump for the diffusion absorption refrigerating system. Ammonia was used as the refrigerant and the helium was charged in order to balance the pressure between the low and high pressure side. As experimental variables, the concentration of ammonia charged into system, heat input, and the pressure of helium were selected. Experimental results show that the generation rate of ammonia vapor and the circulation rate of diluted ammonia solution were increased as the heat input increases, but the ratio of the solution to vapor flow rate was decreased. The generation rate of refrigerant vapor and the circulation rate of diluted ammonia solution increased as the system pressure decreased. Finally under the condition of 25 bars, the concentration of rich ammonia solution was not affected by the generation rate of ammonia vapor and the circulation of diluted ammonia solution.

Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle (단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성)

  • Kim, Jong-Chul;Jang, Sea-Il;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.816-821
    • /
    • 1997
  • The hydrodynamics and the liquid flow characteristics were investigated in an internal circulation airlift reactor with a single nozzle as a gas distributor. In an air-water system, the gas holdup in the individual flow zone and the impulse-response curve of tracer were measured at various gas velocities and reactor heights. Experimental results showed that for the higher gas velocity(>about 8 cm/s), the flow behavior of bubbles in the riser was turbulent flow due to strong bubble coalescences and the axial height of dispersion zone of large bubbles having uniform sizes in the downcomer was decreased with increasing gas velocity. And mean gas holdups in the individual flow zone and the reactor were increased with increasing gas velocities and were decreased with increasing heights of the top section of the reactor and it was decreased with increasing the height of the top section and gas velocity. Flow characteristics of liquid in the riser and the downcomer was tend to access to plug flow and the overall flow behavior of liquid was mainly varied with the size of the top section which it was assumed to be perfect mixing zone. In these conditions, liquid circulation velocities were increased with increasing gas velocities and they were higher than those by using other gas distributors.

  • PDF

Accidental ingestion of E-cigarette liquid nicotine in a 15-month-old child: an infant mortality case of nicotine intoxication

  • Seo, An Deok;Kim, Dong Chan;Yu, Hee Joon;Kang, Min Jae
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.12
    • /
    • pp.490-493
    • /
    • 2016
  • Electronic cigarettes are novel tobacco products that are frequently used these days. The cartridge contains liquid nicotine and accidental poisoning, even with a small oral dose, endangers children. We present here a mortality case of a 15-month-old child who ingested liquid nicotine mistaking it for cold medicine. When the emergency medical technicians arrived, she was found to have pulseless electrical activity. Spontaneous circulation was restored after approximately 40 minutes of cardiopulmonary resuscitation. The cotinine level in her urine was 1,716 ng/mL. Despite intensive supportive care, severe anoxic brain injury was found on computed tomography and the child ultimately died. This fatality highlights the need for public health efforts to minimize such accidents.

An Experimental Study on the Vapor-Liquid Equilibria of Propane and R227ea Mixtures (프로판과 R227ea 혼합냉매의 기상-액상 평형 실험)

  • Kang, Dae-Kyung;Kim, Ju-Hyok;Kim, Min-Soo;Kim, Young-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.245-249
    • /
    • 2003
  • Vapor-liquid equilibrium data were obtained for system of propane + R227ea (Heptafluoropropane) over the temperature range from 253.15 K to 323.15 K at 10 K intervals. Experiments were performed in a circulation type apparatus by injecting vapor through liquid pool using a magnetic pump. This system forms azeotrope in the temperature range of this study. The experimental results were correlated with the Peng-Robinson (PR) equation of state and Redlich-Kwong-Soave (RKS) equation of state using the van der Walls one-fluid mixing rule and were compared with each other.

  • PDF