• Title/Summary/Keyword: liquid cell

Search Result 1,650, Processing Time 0.031 seconds

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF

Chemical Composition and Biological Activities of Immunostimulants Purified from Alkali Extract of Poria cocos Sclerotium (복령 균핵의 알칼리추출물에서 정제한 면역활성 증강물질의 작용과 화학구성)

  • Rhee, Sang-Dal;Cho, Soo-Muk;Park, Jeong-Sik;Han, Sang-Bae;Jeon, Young-Jin;Kim, Hwan-Mook;Kim, Gwang-Po
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.293-298
    • /
    • 1999
  • An one percent sodium carbonate extract prepared from sclerotia of Poria cocos activated the proliferation of the T lymphocytes as measured by mixed lymphocyte responses(MLR). The active fraction, PCSC22, was isolated from an one percent sodium carbonate extract by a combination of fractionation procedures, including ethanol precipitation and chromatographies on column of DEAE-cellulose and Sephadex G50. Carbohydrate and peptide contained in PCSC22 were 78 : 22% in ratio. On employing gel filtration high performance liquid chromatography, PCSC22 exhitited a homogeneous peak with an average molecular weight of 8 kDa. The sugar moiety of PCSC22 was composed with mannose (92%), galactose (6.2%) and arabinose (1.3%), which might be indicated as heteromannan. Fifteen amino acids were found in peptide moiety of the polysaccharide and aspartic acid, serine, and valine were major components. PCSC22 activated the primary proliferation of T lymphocytes measured by mixed lymphocyte responses, the antibody production of the B lymphocytes and the secretion of nitric oxide from macrophage cell line, RAW264.7.

  • PDF

Evaluation of a Sample-Pooling Technique in Estimating Bioavailability of a Compound for High-Throughput Lead Optimazation (혈장 시료 풀링을 통한 신약 후보물질의 흡수율 고효율 검색기법의 평가)

  • Yi, In-Kyong;Kuh, Hyo-Jeong;Chung, Suk-Jae;Lee, Min-Haw;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.

  • PDF

A Study on the Sludge Reduction and Biogas Production through a Two-phase Anaerobic Digestion Process (이상 혐기성 소화 공정을 통한 슬러지 발생량 저감과 바이오가스 생산에 관한 연구)

  • Woo, Mi-Hee;Han, Gee-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.894-899
    • /
    • 2010
  • We coordinated the experiments with ozone pretreatment and two-phase anaerobic digestion using solid-liquid separation to raise the efficiency of sludge volume reduction and obtained the following results. The pre-treatment with ozone reduced the solid concentration in the average of TSS $8.3{\pm}2.0%$ TSS and $9.2{\pm}}2.8%$ VSS. Of the organic material, TCOD decreased $5.1{\pm}2.4%$, but SCOD showed $72{\pm}6.5%$ increased, which was due to destruction of the cell wall and dissolution of icell media by the powerful oxidative stress of ozone. During the two-phase anaerobic digestion process, we achieved the reduction of $21.5{\pm}3.4%$ TSS, $20.2{\pm}8.4%$ VSS, $32.1{\pm}7.9%$ TCOD and $22.1{\pm}7.2%$ SCOD in average. The maximum methane gas production were 177.6 mL per g TSS, 210.8 mL per g VSS, 127.0 mL per g TCOD and 1452.0 mL per g SCOD, respectively. Solid material reduction through the two-phase anaerobic digestion and MLE (Modified Ludzack-Ettinger) processes were 93.8% of TSS and 92.0% of VSS. We concluded that suggested two-phase anaerobic digestion and MLE process could achieve the reasonable production of biogas and a maximum reduction of the sludge volume.

Research Trends for Soil-Related Algal Toxicity (토양 관련 조류독성 연구동향)

  • Nam, Sun-Hwa;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.607-612
    • /
    • 2013
  • Soil ecological risk assessment requires terrestrial toxicity data based on trophic levels including plants, earthworms, nematodes, and springtails. To expand the trophic levels, it is needed to consider primary producer algae, nearly distributed in terrestrial environment, as representative terrestrial test species. In this study, we collected research cases focused on soil-related test species and exposure media from SCI papers, and analyzed exposure media, test species, test chemicals, and other test methods, for reviewing research trends of soil-related algal toxicity. Up to now, in the soil-related algal toxicity, test species were 8 cases (Pseudokirchneriella subcapitata, Chlorella vulgaris, Scenedesmus bijugatus, Chlorococcum infusionum, Scenedesmus subspicatus, Nostoc linckia, Synechococcus elongatus, and Chlorococcum sp.) and endpoints were cell count or photosynthetic pigment content. Also, 5 of exposure media were liquid medium, soil extracts, porewater, agar medium, and soil. Most of papers used algae isolated from natural soils or soil extracts. There were only one case for assessing algal toxicity in soil medium. More researches regarding algal toxicity in soil environments need to be conducted consistently.

Influence of Chloride Content of on Electrical Resistivity in Concrete (콘크리트내 염소이온량이 전기저항에 미치는 영향)

  • Yoon, In-Seok;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.90-96
    • /
    • 2014
  • The electrical resistivity of concrete can be related to two processes involved in corrosion of reinforcement: initiation (chloride penetration) and propagation (corrosion rate). The resisistivity of concrete structure exposed to chloride indicates the risk of early corrosion damage, because a low resistivity is related to rapid chloride penetration and to high corrosion rate. Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell. In previous study, it was realized that the resistivity of concrete depended on the moisture content in the concrete, microstructural properties, and environmental attack such as carbonation. The current is carried by ions dissolved in the pore liquid. While some data exist on the relationship between moisture content on electrical resistivity of concrete, very little research has been conducted to evaluate the effect of chloride on the conduction of electricity through concrete. The purpose of this study is to examine and quantify the effect of chloride content on surface electrical resistivity measurement of concrete. It was obvious that chloride content had influenced the resistivity of concrete and the relationship showed a linear function. That is, concrete with chloride ions had a comparatively lower resistivity. Decreasing rate of resistivity of concrete was clear at early time, however, after 50 days resistivity was constant irrespective of chloride concentration. Conclusively, this paper suggested the quantitive solution to depict the electrical resistivity of concrete with chloride content.

Milling Cutter Selection in Machining Center Using AHP (AHP를 활용한 머시닝센터의 밀링커터 선정)

  • Lee, Kyo-Sun;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • The CNC machine tool field is showing a growing trend with the recent rapid development of manufacturing industries such as semiconductors, automobiles, medical devices, various inspection and test equipment, mechanical metal processing equipment, aircraft, shipbuilding and electronic equipment. However, small and medium-sized machining companies that use CNC machine tools are experiencing difficulties in increasingly intense competition. Especially, small companies which are receiving orders from 3rd or 4th venders are very difficult in business management. In recent years, company S experienced difficulty to make product quality and delivery time due to the ignorance of the processing method when manufacturing cooling plate jig made of SUS304 material used for cell phone liquid crystal glass processing. In order to solve these problems, we redesigned the process according to the size of our company and tried to manage all processes with quantified data. In the meantime, we have found that there is a need to improve the cutter process, which accounts for most of the machining process. Therefore, we have investigated the correlation between RPM and FEED of three cutters that have been used in the past. As a result, we found that it is the most urgent problem to solve the roughing process during the cutter operation which occupies more than 70% of the total machining. In order to shorten the machining time and improve the quality in machining of SUS304 cooling plate jig, we select the main factors such as price, tool life, maintenance cost, productivity, quality, RPM, and FEED and use AHP to find the most suitable milling cutter. We also tried to solve the problem of delivery, quality and production capacity which was a big problem of S company through experiment operation with selected cutter tool. As a result, the following conclusions were drawn. First, the most efficient of the three cutters currently available in the machining center has proven to be an M-cutter. Second, although one additional facility was required, it was possible to produce the existing facilities without additional investment by supplementing the lack of production capacity due to productivity improvement. Third, the Company's difficulties in delivery and capacity shortfalls have been resolved. Fourth, annual sales increased by KRW 109 million and profits increased by KRW 32 million annually. Fifth, it can confirm the usefulness of AHP method in corporate decision making and it can be utilized in various facility investment and process improvement in the future.

Measurement of Al Concentration in Liquid Zinc by E.M.F Method with $CaF_2$ ($CaF_2$ 기전력법에 의한 용융아연 중 알루미늄 농도의 측정)

  • Park Jin Sung;Kim Hang Soo;Jung Woo-Gwang;Katayama I.;Kim Jong Sang
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.204-210
    • /
    • 2000
  • The control of dissolved aluminum concentration in the hot dip zinc galvanizing bath is greatly important in producing galvannealed steel sheets. The purpose of present study is to provide basic data for measurement of the aluminum concentration in site in hot dip zinc bath at the temperature of $460^{\circ}C\~500^{\circ}C$ using $CaF_2$ solid electrolyte sensor with three kinds of reference electrode. Good workability and stability of the sensor were confirmed with the $Bi+BiF_3$ reference electrode from the emf measurement. In order to measure the aluminum concentration in Zn-Al bath, the galvanic cell of fluorine ion was constructed with $CaF_2$ solid electrolyte as follows; $$(-)W|Zn-Al,\;AlF_3|CaF_2|Bi,BiF_3|W(+)$$. The emf measurement was made at the temperature of $460\pm10^{\circ}C$ in the Zn-Al bath. The following correlationship between aluminum concentration and emf was obtained by the least square regression analysis; $$E/mV=56.795log[\%Al]+1881.7\;R=0.9704$$,$$0.026wt\%{\leq}[\%Al]{\leq}0.984wt\%$$

Salt-water Processing-dependent Change in Anti-oxidative and Anti-inflammatory Effects of Cortex Eucommiae (염수초 포제법에 따른 두충의 항산화 및 항염증 활성 변화 비교연구)

  • Koh, Wonil;Lee, Jinho;Ha, In-Hyuk;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun Jee;Gang, Byeong-Gu;Jeon, Se Hwan;Cho, Yongkyu;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.29-38
    • /
    • 2017
  • Objectives The present study aimed to investigate the change in marker compounds, anti-oxidative and anti-inflammatory effects of salt-water processed Cortex Eucommiae. Methods To evaluate the influence of processing on anti-oxidant effect of Cortex Eucommiae, changes in total phenol, total flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) between processed and raw Cortex Eucommiae were assessed. In addition, nitrite assay was conducted to determine the influence of processing on anti-inflammatory effect of Cortex Eucommiae. Cell viability was also examined as to elucidate whether processing affects cytotoxicity of Cortex Eucommiae. Finally, high-performance liquid chromatography (HPLC) analysis was conducted to monitor changes in pinoresinol diglucoside amount of processed and raw Cortex Eucommiae. Results Salt-water processed Cortex Eucommiae showed higher total phenol and flavonoid amount, compared to raw Cortex Eucommiae. Furthermore, anti-oxidative activity of processed Cortex Eucommiae was improved as discovered in DPPH, ABTS, and FRAP assays. Anti-inflammatory effect of Cortex Eucommiae was also enhanced following salt-water processing, as evidenced in nitrite assay. HPLC analysis found that the amount of pinoresinol diglucoside, widely known as the marker compound of Cortex Eucommiae, increases through salt-water processing. All experiments were performed with non-toxic concentration of Cortex Eucommiae; processing did not affect the cytotoxicity of Cortex Eucommiae up to the currently adopted concentration. Conclusions The present results support that salt-water processing of Cortex Eucommiae is beneficial in terms of marker compound amount, anti-oxidative, and anti-inflammatory activities. Additional investigations are needed to standardize the processing method of Cortex Eucommiae.

Recycling of Cutting Oil from Silicon Waste Sludge of Solar Wafer (태양광용 웨이퍼 실리콘 폐슬러지로부터 절삭유의 재생)

  • Um, Myeong-Heon;Lee, Jong-Jib;Ha, Beom Yong
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.274-280
    • /
    • 2016
  • In this study, it was to develop a chemical method that can recycle the cutting oil which accounts for about 25% of the cost of the process among containing materials of silicon waste sludge generated in the process for producing a solar cell wafer. The 7 types of reagents have been used, including acetone, HCl, NaOH, KOH, $Na_2CO_3$, HF, $CH_2Cl_2$, etc. for this experiment. And It was carried out at a speed of 3000 rpm for 60 minutes centrifugation after performing a reaction with a waste sludge at various concentrations. As a result, the best reagents and conditions for separating the solid such as a silicon powder and a metal powder and liquid cutting oil were identified as 0.3 N NaOH. It is found to be pH 6.05 in a post-processing recycled cutting oil with 0.3 N NaOH after reaction of waste sludge and 0.1 N HCl which is effective to remove metal powder in order to adjust the pH to suit the properties of the weak acid is a commercially available cutting oil and it showed excellent turbidity than when applied to sludge with 0.3 N NaOH alone. The results of FT-IR analysis which can compare the properties of the commercially available cutting oil shows it has a possibility of recycling oil. The cutting oil recovery rate obtained through the experiment was found to be 86.9%.