• Title/Summary/Keyword: lipid-bilayer

Search Result 89, Processing Time 0.028 seconds

Effects of Dopamine.HCI on Structural Parameters of Bovine Brain Membranes

  • Bae, Moon-Kyoung;Huh, Min-Hoi;Lee, Seung-Woo;Kang, Hyun-Gu;Pyun, Jae-Ho;Kwak, Myeong-Hee;Jang, Hye-Ock;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.653-661
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effect of dopamine$.$HCI on the structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and thickness of the lipid bilayer) of synaptosomal plasma membrane vesicles (SPMV), which were obtained from the bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophan of membrane pro-teins to Py-3-Py and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS) was also utilized. Dopamine$.$HCI increased both the bulk lateral mobility and annular lipid fluidity, and it had a greater fluidizing effect on the inner monolayer than on the outer monolayer. Furthermore, the drug had a clustering effect on membrane proteins.

An NMR Study on the Phase Change of Lipid Membranes by an Antimicrobial Peptide, Protegrin-1

  • Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.372-378
    • /
    • 2010
  • Membrane disruption by an antimicrobial peptide, protegrin-1 (PG-1), was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in the mixture of PG-1 and POPC_$d_{31}$ lipids deposited on thin cover-glass plates. The experimental line shapes of anisotropic $^2H$ SSNMR spectra measured at various peptide-to-lipid (P/L) ratios were simulated reasonably by assuming the mosaic spread of bilayers containing pore structures or the coexistence of the mosaic spread of bilayers and a fast-tumbling isotropic phase. Within a few days of incubation in the hydration chamber, the pores were formed by the peptide in the POPC_$d_{31}$ and POPC_$d_{31}$/cholesterol membranes. However, the formation of the pores was not clear in the POPC_$d_{31}$/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) membrane. Over a hundred days after hydration, a rapidly rotating isotropic phase increased in the POPC_$d_{31}$ and the POPC_$d_{31}$/cholesterol membranes with the higher P/L ratios, but no isotropic phase appeared in the POPC_$d_{31}$/POPG membrane. Cholesterol added in the POPC bilayer acted as a stabilizer of the pore structure and suppressed the formation of a fast-tumbling isotropic phase.

Antioxidant effect of Vitamin-C / alginate gel-entrapped liposomes for resistance of DHA autoxidation

  • Han, Seong-Cheol;Heo, Eun-Jeong;Lee, Gi-Yeong;Kim, Yeon-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.145-148
    • /
    • 2003
  • The resistance of docosahexaenoic acid (DHA) incorporated $L-{\alpha}-phosphatidyl$ -choline (PC) liposomes against autoxidation was studied for application to food and cosmetic industry. For the preparation of vitamin-C/calcium alginate gel entrapped DHA-PC-liposomes (AVDLs), DHA incorporated PC bilayer was hydrated with vitamin-C containing calcium alginate solution, and the fraction containing liposome was suspended in $CaCl_2$ solution. DHA loading efficiency was calculated by TLC scanning method The morphological examination of AVDLs was performed with transmission electron microscopy (TEM) and lipid peroxidation was measured with an assay for thiobarbituric acid reactive substance (TBARS). DHA loading efficiency was about 17 % of initial loading volume, and when AVDLr containing 0.2 % vitamin C, lipid oxidation was minimized.

  • PDF

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Construction of 1H-15N Double Resonance Solid-State NMR Probe for Membrane Proteins in Aligned Bicelles

  • Park, Tae-Joon;Kim, Ji-Sun;Um, Seung-Hoon;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1187-1191
    • /
    • 2010
  • $^1H-^{15}N$ heteronuclear dipolar coupling solid-state NMR experiments on lipid bilayer or bicelle samples are very useful for the structural studies of membrane proteins. However, to study these biological samples using solid-state NMR, a specific probe with high efficiency and high capability is required. In this paper, we describe the optimized design, construction, and efficiency of a 400 MHz wide-bore $^1H-^{15}N$ solid-state NMR probe with 5-mm solenoidal rf coil for high power, multi-pulse sequence experiments, such as 2D PISEMA or 2D SAMMY.

Gamma camera/MR dual imaging liposome labeled with radioisotope and paramagnetic ions

  • Kim, Youn Ji;Kim, Jonghee;Lee, Woonghee;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Liposomes are defined as spherical, self-closed structures formed by lipid bilayers containing aqueous phase. Most liposomes are composed of various amphipathic lipids such as phospholipids and cholesterol. We used amphipathic lipids (DPPC, DPPG) as liposome components and prepared around 100 nm liposomes by standard extrusion method. Nuclear/MR dual imaging agents based on liposome platform were prepared by adding radioactive $^{131}I$-HIB (hexadecyl-4-tributylstannylbenzoate) and Gd-DTPA into liposome bilayer and inside liposome, respectively. Gamma camera and MR imaging both showed signal increases in liver.

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Refolding of Acid-Unfolded Globin to Hemoglobin

  • Lee Jong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.85-88
    • /
    • 2005
  • Hemoglobin is oxygen carrier protein within erythrocyte in blood. Apoprotein of this, globin, is synthesized in the cytosol but it's cofactor, heme, is synthesized in the mitochondria. It has not been known very well how globin receives the heme from mitochondria and folds to hemoglobin. In this folding process, the initial structure of globin seems to be very important. A small volume of globin at acid pH was added rapidly into the bulk of an egg phosphatidylcholine $60\%$ liposome, containing hemins, at neutral pH according to the Rapid Dilution method. It was observed that an acid-induced unfolding structure of globin is initially needed to receive hemins from the lipid bilayer of liposomes. Also, this conclusion was confirmed with the absorption spectrum of the refolded globin separated by centrifugation.

  • PDF

Detergent and Phospholipid Mixed Micelles as Proliposomes for an Intravenous Delivery of Water-Insoluble Drugs

  • Son, Kyong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.17-34
    • /
    • 1992
  • A novel drug delivery system, detergent-phospholipid mixed micelles as proliposomes, for water-insoluble compounds was developed by investigating (i) spontaneous formation of small unilamellar vesicles (SUV) from bile salt-egg phosphatidylcholine mixed micelles, (ii) the molecular mechanism of micelle-to-vesicle transition in aqueous mixtures of detergent-phospholipid, (iii) preparation and screening of a suitable liposomal formulation for a lipophilic drug: solubilization of the drug within the lipid bilayer, evaluation of the solubility limit, and characterization of the resulting product with respect to the physical properties and stability of the drug in the system, and (iv) testing antitumor activity in vitro. The results showed that the new carrier had a strong possibility to be a biocompatible universal formulation for water-insoluble drugs.

  • PDF

Membrane Penetration and Translocation of Nanoparticles

  • Sin, Dong-Ju;Hyeon, Jeong-In;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.139-151
    • /
    • 2013
  • Understanding interactions between nanoparticles and lipid bilayer membranes is of great importance due to the potential applications in bio-nanotechnology such as drug deliveries, carrying genes, and utilization of integral membrane proteins. To investigate the dynamics of nanoparticle penetration and translocation into membranes, we performed dissipative particle dynamics simulations which use simple and intuitive coarse-grained models yet effectively describe hydrodynamic interactions in cell environment. We discuss the influence of the shape of nanoparticles as well as the properties of membranes including large membrane-embedded proteins that are found to significantly affect orientation of nanoparticles within membranes and, in turn, the minimum force required to translocate nanoparticles.

  • PDF