• Title/Summary/Keyword: lipid peroxide formation

Search Result 125, Processing Time 0.028 seconds

Effect of Dietary Fish Oil on Lipid Peroxidation and Antiperoxidative System in Rat Liver and Brain -Sex-related Differences- (어유(魚油)섭취가 흰쥐의 간과 뇌조직의 지질과산화물 형성과 항산화계에 미치는 영향 -성(性)의 차이를 중심으로-)

  • Choi, Kyung-Won;Park, Myungg-Hee;Chang, Kyung-Sook;Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.147-155
    • /
    • 1987
  • In order to examine the effect of dietary fish oil on lipid peroxide formation and antiperoxidative efficiency in liver and brain, a group of male and female rats weighing about 70 grams were fed for three months, diet containing mackerel oil(MO) at the level of 10% (w/w). Results were compared, according to sex and source of dietary fat, i.e., in addition to MO, perilla oil(PO), soybean oil(SO), rapeseed oil(RO) or beef tallow(BT). Liver lipid peroxide level was significantly higher and levels of ${\alpha}-tocopherol$ and reduced glutathione(GSH) were lower in MO group than in other groups. This phenomenon was less clear in male than in female. Liver GSH level was lower in male, compared to female, but oxidized glutathione (GSSG) level did not vary, depending on either sex or dietary fat source. Brain lipid peroxide and ${\alpha}-tocopherol$ levels were not different among five experimental groups. Activities of liver and brain glutathione peroxidase and superoxide dismutase were not changed by dietary fat source, but glutathione peroxidase activity was higher in female than in male. The present study shows (a) that there is sex-related difference in antiperoxidatiye activity and (b) that fish oil containing $C_{20-22}({\omega}3)$ fatty acids, increases body lipid peroxide level and consumes more of cellular antioxidant, although it has lower total PUFA content than perilla or soybean oils.

  • PDF

Reactive Oxygen Species and Cytotoxicity of Bamboo (Phyllostachys pubescens) Sap (대나무수액의 활성산소 소거활성과 세포독성)

  • Cho, Sook-Hyun;Choi, Yong-Jo;Rho, Chi-Woong;Choi, Chul-Yung;Kim, Deok-Song;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • The antioxidant properties of bamboos sap isolated from Phyllostachys pubescens were investigated. This product scavenged intracellular reactive oxygen species (ROS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and prevented lipid peroxidation. The radical scavenging activity of bamboo sap protected the viability of peritoneal macrophage cells exposed to hydrogen peroxide $(H_2O_2)$, Furthermore, bamboo sap reduced apoptotic cell formation induced by $H_2O_2$ as demonstrated by decreases in the number of hypo-diploid cells am apoptotic cell body formation. These results indicate that bamboo sap has radical scavenging activity and ameliorates $H_2O_2$ induced cytotoxicity.

DNA Damage of Lipid Oxidation Products and Its Inhibition Mechanism (지질산화생성물의 DNA손상작용 및 그 억제기구)

  • KIM Seon-Bong;KANG Jin-Hoon;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.419-430
    • /
    • 1987
  • The damage of plasmid DNA by lipid peroxidation and its inhibition were investigated through the model system of DNA and linoleic acid at $37^{\circ}C$. The degree of DNA damage increased in proportion to the increase of concentration and peroxidation of linoleic acid. DNA damage induced from linoleic acid peroxidation was greatly inhibited by the addition of active oxygen scavengers, especially, singlet of oxygen scavenge$(\alpha-tocopherol,\;cysteine)$ and superoxide anion scavenger(superoxide dismutase, ascorbic acid) in reaction system. These active oxygens, such as superoxide anion and hydrogen peroxide were rapidly generated in the early stage of peroxidation (POV below 100 mg/kg) and also scanvenged by the addition of superoxide dismutase and catalase, respectively. Hydroperoxide isolated from autoxidised linoleic acid showed DNA damage. Hydroperoxide induced-DNA damage was not inhibited by active oxygen scavengers. Lipid oxidation products, malonaldehyde and hexanal, also influenced on the DNA damage. Accordingly, it is speculated that DNA damage by lipid oxidation products is due to active oxygens such as singlet oxygen and superoxide anion formed in the early stage of peroxidation, direct action of hydroperoxide and formation of low molecular carbonyl compound-DNA complex. Furthermore, DNA damage induced by lipid peroxidation was remarkably inhibited by the addition of active oxygen scavengers and natural antioxidative fractions extracted from garlic and ginger. These antioxidative fractions also suppressed the generation of active orygens and linoleic acid oxidation. It is assumed that the inhibition of DNA damage by garlic and ginger extracts is due to the scavenging effect of active oxygens and the inhibition of hydroperoxide and oxidation products formation.

  • PDF

Enhanced Antioxidant Activity of Mugwort Herb and Vitamin C in Combination on Shelf-life of Chicken Nuggets

  • Hwang, Ko-Eun;Kim, Hyun-Wook;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Choi, Yun-Sang;Lee, Mi-Ai;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.582-590
    • /
    • 2014
  • The effect of mugwort extract (ME) and vitamin C (VC), added individually or in combination, on color, lipid oxidation, and sensory characteristics of chicken nuggets stored for 12 d was investigated. Eight treatments of chicken nuggets contained the following: Control (no antioxidant added), VC (0.05% VC), ME 0.05 (0.05% ME), ME 0.1 (0.1% ME), ME 0.2 (0.2% ME), VC+ME 0.05 (0.05% VC + 0.05% ME) and VC+ME 0.1 (0.05% VC + 0.1% ME), VC+ME 0.2 (0.05% VC + 0.2% ME). Results showed that the mixture of 0.05% VC and 0.2% ME was most effective for delaying lipid oxidation (thiobarbituric acid reactive substances, conjugated dienies, and peroxide formation) when compared to the control or ME alone added. The color values of all treatments were significantly affected by adding ME. Additionally, the total color difference (${\Delta}E$), chroma ($C^*$), and hue angle ($H^{\circ}$) values of all treatments, except for VC, were lower than those of the control as the amount of ME increased. The sensory characteristics (flavor, odor, and overall acceptability) did not differ significantly in any of the chicken nugget samples, whereas storage time had a significant effect. The results suggest that the possibility of utilizing chicken nuggets with a mixture of mugwort extract and vitamin C for the increase of shelf-life and quality.

Discrimination of Astaxanthin Fed Laying Hens and Their Peroxidated Carcasses by Electronic Nose

  • Kwon, Young-An;Lee, Chan-Yong;Lee, Bong-Duk;Choi, Seung-Hyun;An, Gil-Hwan
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.215-219
    • /
    • 2010
  • The applicability of electronic nose was tested to detect lipid peroxidation in chickens and to measure antioxidant effect of astaxanthin in chicken carcasses. Two sources of astaxanthin were fed to 62-wk-old spent laying hens to improve meat quality: natural astaxanthin (NA) from the red yeast, Phaffia rhodozyma, and synthetic astaxanthin (SA) from chemical synthesis. One hundred forty four ISA Brown laying hens were used in a 6-wk feeding trial. Three treatments consisted of the basal diet (control), SA (100 mg astaxanthin/kg basal diet) and NA (50 mg astaxanthin/kg basal diet). The astaxanthin levels of SA and NA were set to give a similar degree of skin pigmentation. After 6-wk feeding of astaxanthin, the skins from NA and SA were discriminated from the control by electronic nose. However, electronic nose failed to distinguish between SA and NA skins after 6-wk feeding. The astaxanthin level differences between skins of SA and NA were not remarkable during the 6-wk trial. The lipid peroxide formation in skin was significantly decreased by SA but not by NA. The antioxidation effect of SA was detected by electronic nose because SA skin was discriminated from others. NA was a better pigmentation agent than SA, but the reverse was true in antioxidation. Electronic nose is applicable for detecting astaxanthin in chicken, and meat off-flavor caused by lipid peroxidation during storage.

The Effects of Fermented Anchovy on the Bromobenzene-Induced Hepatic Lipid Peroxidation in vitro (시험관내에서 멸치액젓이 Bromobenzene유발 간조직 지질과산화에 미치는 효과)

  • Park, Jong-Ok;Choi, Jong-Won;Kim, Hee-Sook;Ryu, Byung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1179-1185
    • /
    • 2000
  • Fermented anchovy was used to investigate its effects on the formation of lipid peroxide and the activities of epoxide or free radical generating enzyme in vitro in bromobenzene-treated rats. All solvent fractions from fermented anchovy not only showed the strong antioxidative activities on linoleic acid autooxidation, but also reduced bromobenzene-induced hepatic lipid peroxidation. The activities of aniline hydroxylase and aminopyrine N-demethylase elevated by bromobenzene were recovered to the level of normal rats by adding the solvent fractions of fermented anchovy. But, xanthine oxidase and aldehyde oxidase activities were not affected by fermented anchovy. These results suggest that reduction of the bromobenzene-induced hepatic lipid peroxidation is caused by inhibition on the epoxide formation, not on free radical generation.

  • PDF

Antioxidative Effect of S-allylmercaptocysteine Derived from Aged Garlic on Oxidation of Human Low Density Lipoprotein (숙성 마늘 유래 S-allylmercaptocysteine의 human low density lipoprotein (LDL)에 대한 항산화 효과)

  • Yang, Seung Taek
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1712-1717
    • /
    • 2012
  • Oxidation of low density lipoprotein (LDL) plays an important role in the development and progression of atherosclerotic disease. In this study, human LDL was isolated and oxidized using $CuSO_4$ in the presence or absence of S-allylmercaptocysteine. Oxidative modification of the LDL fraction was monitored by both the appearance of thiobarbituric acid substances (TBARS), an increase in electrophoretic mobility, and conjugated diene formation. The addition of S-allylmercaptocysteine reduced lipid peroxide formation, indicating it to be an effective antioxidant. The inhibition of LDL oxidation by $5{\sim}20{\mu}g/ml$ S-allylmercaptocysteine occurred in a dose-dependent manner, as assessed by the TBARS assay. S-allylmercaptocysteine at $20{\mu}g/ml$ almost completely inhibited the $Cu^{2+}$ induced increases in electrophoretic mobility of LDL and almost completely inhibited conjugated diene formation. A more potent antioxidative activity was observed for S-allylmercaptocysteine than for either Vitamin C or $d{\ell}-{\alpha}$-tocopherol. Thus, S-allylmercaptocysteine aid in preventing the development and progression of atherosclerotic disease.

6'-O-Galloylpaeoniflorin Protects Human Keratinocytes Against Oxidative Stress-Induced Cell Damage

  • Yao, Cheng Wen;Piao, Mei Jing;Kim, Ki Cheon;Zheng, Jian;Cha, Ji Won;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.349-357
    • /
    • 2013
  • 6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide ($H_2O_2$)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, $H_2O_2$-generated intracellular reactive oxygen species (ROS), the superoxide anion radical ($O_2^-$), and the hydroxyl radical (${\cdot}$OH). GPF also safeguarded HaCaT keratinocytes against $H_2O_2$-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

Apoptotic effect of formaldehyde in cultured human hepatocyte cell lines (인간 간세포주 에서 포름알데히드에 의한 세포 사멸 효과)

  • Park, Soo-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.462-467
    • /
    • 2009
  • Exposure of formaldehyde (FA), one of the major compounds in pesticides and in the onset of sick house syndrome, has been implicated in the development of diverse diseases. Liver is a very important organ to body metabolism and drug detoxification. Apotosis of hepatocytes is associated with the onset of liver diseases such as hepatitis. However, the apoptotic effect of FA in hepatocytes is not clear. Therefore, this study was conducted to investigate the effect of FA on the apoptosis in HepG2 cells, a human hepatocyte cell line. As a result, FA (> $500\;{\mu}M$) decreased cell viability and increased lactate dehydrogenase activity in HepG2 cells, which was blocked by the treatment of vitamin E and N-acetylcysteine (NAC). In addition, FA decreased glutathione (GSH) contents and Bcl-2 levels, while increasing lipid peroxide formation and Bax levels. It also cleaved caspase-3 form, which was blocked by the treatment of vitamin E and NAC. It is insisted that FA induced apoptosis via oxidative stress in human hepatocytes.