• Title/Summary/Keyword: lipid membrane

Search Result 541, Processing Time 0.026 seconds

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

The Secondary Effects of Pencycuron on the Formation of Giant Protoplasts and the Lipid Peroxidation of Rhizoctonia solani AG4

  • Kim, Heung-Tae;Isamu Yamaguchi;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 2001
  • The secondary effects of pencycuron on cell membrane of Rhizoctonia solani AG4 were investigated by the observation of giant protoplast formation and lipid peroxidation. Compared to protoplasts of R. solani R-C (sensitive strain) and Rh-131 (non-sensitive strain) increased in their size by 2.0-3.5 times 12 h after incubation in potato-dextrose broth containing novozyme (7 mg/$m\ell$) and $\beta$-glucuronidase ($60\mu\textrm{g}/$\textrm{ml}) with 0.6 M mannitol (pH 5.2). The increase of protoplast size in R-C was slightly inhibited from $13.8\textrm{mg}/\textrm{ml}$ without pencycuron to 10.3 ${\mu}{\textrm}{m}$ with 1.0$\mu\textrm{g}$/$m\ell$ of pencycuron. However, the size of giant protoplast of Rh-131 was not affected by the pencycuron treatment. Both strains R-C and Rh-131 did not exhibit the lipid peroxidation 12 h after the application of 1.0 $\mu\textrm{g}$/$m\ell$ pencycuron. The remarkable peroxidation of membrane lipid was observed only in R-C 24 h after pencycuron application, but not in Rh-131. Althought the inhibition of giant protoplast formation and the membrane lipid peroxidation were observed only in the sensitive strain R-C by pencycuron, it is difficult to conclude that these are the primary mechanism of pencycuron. The mild activity of pencycuron on the inhibition of giant protoplast formation and late membrane lipid peroxidation in the fungicide-sensitive strain did not noincid with the dramatic activity of pencycuron in R. solani. Therefore, our results suggest that inhibition of giant protoplast formation and membrane lipid peroxidation is the secondary effect of pencycuron.

  • PDF

Effects of Chlorpromazine·HCl on the Structural Parameters of Bovine Brain Membranes

  • Jang, Hye-Ock;Jeong, Dong-Keun;Ahn, Shin-Ho;Yoon, Chang-Dae;Jeong, Soo-Cheol;Jin, Seong-Deok;Yun, Il
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.603-611
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.

Adaptation of the Hypoosmotic Swelling Test to Evaluate Membrane Integrity of Boar Spermatozoa

  • Jang, Hyun-Yong;Cheong, Hee-Tae;Hwang, Hwan-Sub;Kim, Jong-Taek;Park, Choon-Keun;Lee, Hak-Kyu;Yang, Boo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • The objective of this study was to establish the optimal conditions for hypoosmotic swelling (HOS) test to assess the functional integrity of the membranes of boar fresh or frozen/thawed spermatozoa. When pooled semen sample was incubated for 30 min at $37^{\circ}C$ with different test solution of varied osmolarity, the highest percentage of HOS positive spermatozoa was observed in a 150 mOsmol fructose/Na-citrate solution (33.6%). Incubation time did not affect significantly the score of HOS positive spermatozoa observed in a 150 mOsmol fructose/Na-citrate solution at $37^{\circ}C$, but the osmolarity affected the score of HOS positive spermatozoa under the same condition above. Fresh semen was significantly better than frozen/thawed semen in semen parameters evaluated such as motility, viability, membrane integrity and lipid peroxidation (p<005). In the relationships of sperm parameters, motility vs viability, motility vs membrane integrity and viability vs membrane integrity were positively correlated ($0.82{\sim}0.94$) but lipid peroxidation vs other estimated factors was negatively correlated ($- 0.90{\sim}- 0.98$). Among the evaluation methods, motility vs Viability, motility vs membrane integrity and lipid peroxidation vs other estimated factors were significantly correlated (p<0.05). These results of this. study indicate that the optimal condition of HOST in boar spermatozoa is a 150 mOsmol fructose/Na-citrate solution for 30 min incubation at $37^{\circ}C$ and HOST can substitute the examination of motility, viability and lipid peroxidation.

Effect of Dietary Fat on Structure and Function of Mammalian Cell Membrane (식이지방이 생체막 구조와 기능에 미치는 영향)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.459-468
    • /
    • 1984
  • The currently accepted model of membrane structure proposes a dynamic, asymmetric lipid matrix of phospholipids and cholesterol with globular proteins embedded across the membrane to various degrees. Most phospholipids are in the bilayer arrangement and also closely associated with integral membrane proteins or loosely associated with peripheral proteins. Biological functions of membrane, such as membrane-bound enzyme functions and transport systems, are influenced by the membrane physical properties, which are determined by fatty acid composition of phospholipids, polar head group composition and membrane cholesterol content. Polar and non-polar region of the phospholipid molecule can interact, with changes in the conformation of a membrane-associated protein altering either its catalytic activity or the protein's interaction with other membrane proteins. Mammalian dietary studies attempted to change the lipid composition of a few cell membranes have shown comparisons, using essential fatty acid-deficient diets. In recent years, Clandinin and a few other workers have pioneered the study proving the influence of dietary fat fed in a nutritionally complete diet on composition of phospholipid classes of cell membrane. Modulation caused by diet fat was rapid and reversible in phospholipid fatty acyl composition of membranes of cardiac mitochondria, liver cell, brain synaptosome and lymphocytes. These changes were at the same time, accompanied by variety of membrane associated functions controlled by membrane-bound enzymes, tranporter and receptor proteins. The findings suggest the basic concept of the necessity of dietary fatty acid balance if consistency of optimal membrane structural lipid composition is to be maintained, as well as the overall inadequacy of describing the nutritional-biochemical quality of a dietary fat solely by its content of linoleic acid. Furthermore, they give light on the possible application to clinical and preventive medicine.

  • PDF

The penetration site of local anesthetics into liposomal membrane

  • Han, Suk-Kyu;Bae, Song-Ja;Il-Yun;Kim, Nam-Hong
    • Archives of Pharmacal Research
    • /
    • v.8 no.4
    • /
    • pp.205-211
    • /
    • 1985
  • The distribution of local anesthetics between the hydrocarbone interior and surface area of the lipid bilayer of liposomal membrane was calculated employeg fluorescence probe technique. The quenching of fluorescence probe technique. The quenching of fluorescence probe technique. The quenching of fluorescence of 12-(9-anthroyl) stearic acid and N-octadecyl naphthyl-2-amini-6-sulfonic acid by the local anesthetics in liposomal system was used to calculate the distribution. The Stern-Volmer equation was modified and employed for this calculation. The results showed that procaine hydrocloride and benzocaine were mainly distributed on the surface area of the lipid bilayer of the liposoal membrane, while tetracaine hydrochloride penetrated effectively into the hydrocarbon interior and showed even distribution in the lipid bilayer.

  • PDF

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

Single-Cell-Imaging-Based Analysis of Focal Adhesion Kinase Activity in Plasma Membrane Microdomains Under a Diverse Composition of Extracellular Matrix Proteins (다양한 ECM 조건하에서의 세포막 미세영역 부위 국소접착인산화효소 활성의 단일세포 이미징 기반 분석)

  • Choi, Gyu-Ho;Jang, Yoon-Kwan;Suh, Jung-Soo;Kim, Heon-Su;Ahn, Sang-Hyun;Han, Ki-Seok;Kim, Eunhye;Kim, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2022
  • Focal adhesion kinase (FAK) is known to regulate cell adhesion, migration, and mechanotransduction in focal adhesions (FAs). However, studies on how FAK activity is regulated in the plasma membrane microdomains according to the composition of extracellular matrix (ECM) proteins are still lacking. A genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor can provide useful information on the activity of intracellular signals with high spatiotemporal resolution. In this study, we analyzed the FAK activities in lipid raft (detergent-resistant membrane) and non-lipid raft (non-detergent-resistant membrane) microdomains using FRET-based membrane targeting FAK biosensors (FAK-Lyn and FAK-KRas biosensors) under four different ECM protein compositions: glass, type 1 collagen, fibronectin, and laminin. Interestingly, FAK activity in response to laminin in a lipid raft microdomain was lower than that in other ECM conditions. Cells subjected to fibronectin showed higher FAK activity in a lipid raft microdomain than that in a non-lipid raft microdomain. Therefore, this study demonstrates that the FAK activity can be distinctively regulated according to the ECM type and the environment of the plasma membrane microdomains.

Taste Response of Electrodes Coated with Polymeric Lipid Membrane (고분자 지질막 전극 센서의 맛 반응 평가)

  • 조용진;박인선;김남수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.249-258
    • /
    • 2002
  • The fourteen different electrodes coated with polymeric lipid membrane were evaluated to selectively monitor the sweet, salty, sour and bitter tastes, and umami. The polymeric lipid membrane consisted of the three components, or polymer matrix, plasticizer and electroactive material, the compositional ratio of which was 1:1.25:1. Herein, the 14 different electroactive materials were used. Sucrose, NaCl, citric acid, caffeine and MSG were used as standard materials of sweet, salty, sour and bitter tastes, and umami. The linear responses of each electrode regarding 5 tastes were analyzed by means of the correlation coefficient between electric potential difference and concentration of a taste material when the linearity was based on a linear model and a thermodynamic model, respectively. As fur salty taste, the electrode coated with valinomycin had a selective linearity at the significance level of 0.01. For monitoring sweet taste, the electrode with oleylamine and the electrode with the mixture of tai-n-octylmethylammonium chloride and dioctylphosphate (2:8) showed the significant linearities at the levels of 0.05 and 0.10, respectively.