• Title/Summary/Keyword: lipid droplet

Search Result 126, Processing Time 0.029 seconds

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

Electron Microscopic Studies on Testicular Leydig Cells of Mice Administered with Testosterone Propionate (Testosterone Propionate 투여로 인한 생쥐 고환(睾丸) Leydig Cell의 형태학적변화(形態學的變化)에 대한 전자현미경적연구(電子顯微鏡的硏究))

  • Lee, Jae Hyun;Lee, Cha Soo
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.2
    • /
    • pp.241-250
    • /
    • 1975
  • The light and electron microscopic observations were carried out in order to know the morphological changes of the testicular Leydig cells in the mouse injected with testosterone propionate for a long period. The results obtained were as follows: With the light microscopic study, atrophy of the Leydig cells and larger sudanophilic lipid granules in the experimental group than normal were observed. 2. By the electron microscopic finding, the small spherical or oval mitochondria, large lipid droplets, a decrease in number of smooth endoplasmic reticutum and distended saccular or vacuolar smooth endoplasmic reticulum were observed in the experimental group. Membranous whorls with droplet increased in number and size in the experimental group.

  • PDF

Sour cherry ameliorates hepatic lipid synthesis in high-fat diet-induced obese mice via activation of adenosine monophosphate-activated protein kinase signaling

  • Songhee Ahn;Minseo Kim;Hyun-Sook Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.641-654
    • /
    • 2023
  • Purpose: Sour cherry (Prunus cerasus L.) contains abounding phytochemicals, such as polyphenols and anthocyanins, and has antioxidative effects. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator in enhancing the lipid metabolism. This study hypothesized that the intake of sour cherry affects AMPK signaling. Therefore, this study examined whether sour cherry regulates AMPK to balance the hepatic lipid metabolism and exert ameliorating effects. Methods: Male C57BL/6J mice had obesity induced with a 45% fat diet. The mice were divided into four groups: control (CON), high-fat diet (HFD), low percentage sour cherry powder (LSC), and high percentage sour cherry powder (HSC). The mice in the sour cherry groups were fed 1% sour cherry or 5% sour cherry in their respective diets for 12 weeks. Results: The body weight, visceral fat weight, and lipid droplet size significantly decreased in the treatment groups. The serum and hepatic triglyceride and total cholesterol levels improved significantly in the HSC group. The low-density lipoprotein cholesterol levels were also reduced significantly, whereas the high-density lipoprotein cholesterol levels were increased significantly in both treatment groups. The sterol regulator binding protein-1c and fatty acid synthase expression levels as fatty acid synthesis-related enzymes were significantly lower in the treatment groups than in the high-fat diet group. Furthermore, the adipose triglyceride lipase and hormone-sensitive lipase expression levels as lipolytic enzyme activity and AMPK/acetyl-CoA carboxylase/carnitine palmitoyltransferase-1 as fatty acid β-oxidation-related pathway were upregulated significantly in both sour cherry groups. Conclusions: These results show that sour cherry intake improves hepatic lipid synthesis and chronic diseases by activating AMPK signaling. Therefore, this study suggests that phytochemical-rich sour cherry can be developed as a healthy functional food.

Effects of Chestnut Inner Shell Extract on 3T3-L1 Preadipocyte Differentiation (율피 추출물이 3T3-L1 지방전구세포 분화에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.266-271
    • /
    • 2010
  • Obesity occurred by energy imbalance, is increasing regardless of race, sex, age, and related to the metabolic syndrome, diabetes and cardiovascular disease. Since adipose tissue plays a critical role in regulating energy homeostasis, understanding of adipogenesis pathway and finding of regulatory mechanism for adipogenesis can be helpful to manage obesity as well as obesity-related diseases. In this study, to investigate the effects of Chestnut Inner Shell(CIS) extract on the adipogenesis in 3T3-L1 preadipocytes, 3T3-L1 preadipocytes were differentiated with adipogenic reagents for 9 days in the absence or presence of CIS extract ranging from 10 - 100 ${\mu}g/m{\ell}$. The effect of CIS extract on 3T3-L1 differentiation was examined by measuring intracelluar lipid droplet and triglyceride contents. CIS extract remarkably inhibited lipid accumulation(about 45% inhibition at 100 ${\mu}g/m{\ell}$ of CIS extract) and slightly decreased triglyceride contents(about 15% decrease at 100 ${\mu}g/m{\ell}$ of CIS extract) in 3T3-L1 preadipocytes at the concentration showing no cytotoxicity. These results demonstrated that CIS extract significantly inhibit adipogenesis and can be used for the regulation of obesity.

Rosa acicularis Leaves Exert Anti-Obesity Activity through AMPK-Dependent Lipolysis and Thermogenesis in Mouse Adipocytes, 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.3
    • /
    • pp.247-255
    • /
    • 2024
  • In this study, we aimed to verify the anti-obesity activity of R. acicularis leaves (RAL) and elucidate its mechanism of action in 3T3-L1 preadipocytes. RAL dose-dependently inhibited the accumulation of lipid droplets and triacylglycerol. RAL did not affect cell proliferation and survival in undifferentiated 3T3-L1 cells, but it inhibited cell proliferation in differentiating 3T3-L1 cells. RAL increased ATGL, p-HSL, and HSL, and decreased perilipin-1 in differentiating 3T3-L1 cells. In addition, RAL reduced lipid droplet accumulation and increased free glycerol content in differentiated 3T3-L1 cells. RAL increased ATGL and HSL in differentiated 3T3-L1 cells. Also, RAL increased p-AMPK, PPARγ, UCP-1, and PGC-1α in differentiating 3T3-L1 cells. AMPK inhibition by compound C attenuated RAL-mediated increase of ATGL, HSL, PPARγ, and UCP-1 in 3T3-L1 cells. Taken together, it is thought that RAL may inhibit lipid accumulation through lipolysis and thermogenesis via the activation of AMPK in adipocytes.

Protective effects of selenium on alcohol and/or paraquat-induced hepatotoxicity in guinea pigs (Guinea pig에서 alcohol과 paraquat에 의한 간독성에 미치는 selenium의 방어 효과)

  • Park, Sang-chul;Kang, Hyung-sub;Lee, Ho-il;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.313-325
    • /
    • 1996
  • Experiments were undertaken to examine the ability of selenium to protect against alcohol and/or paraquat-induced hepatotoxicity and to examine the additive effect between alcohol and paraquat. Protective effect against hepatotoxic functions was measured in serum from alcohol(15% v/v), paraquat(200ppm), alcohol and paraquat, and combination of sodium selenite(4ppm) in drinking water-fed guinea pigs ad libitum for 4 weeks. A total of 68 healthy 7-weeks-old male animals were assigned at random to 8 treatment groups(9~13 animals/group). Body and liver weight losses, and high serum concentrations in aspartate aminotransferase(AST), alanine aminotransferase(ALT, in only paraquat group), $\gamma$-glutamyltranspeptidase($\gamma$-GTP), cholesterol(Cho), creatinine, blood urea nitrogen(BUN), total bilirubin(TB), direct bilirubin(DB), total protein(TP), albumin and globulin as well as low values in alkaline phosphatase(ALP) and glucose were produced in a groups of alcohol or paraquat-fed. These values were not potentiated in a group given the combination of alcohol plus paraquat. Morphological changes in the liver were also observed in the alcohol or paraquat-fed group. Lipid droplet and cell swelling in the hepatocytes were observed in alcohol-fed guinea pig, especially Mallory's hyaline arounded hepatic vein. In the paraquat-fed guinea pig, lipid droplet, pyknosis and karyolysis were observed. When alcohol or paraquat was combined with selenium-fed, hyperplasia of Kupffer cell in liver were observed. However, the mean ALT, $\gamma$-GTP, Cho, BUN, TB, TP, albumin and globulin values were lower in groups given the combination of alcohol and/or paraquat plus selenium, compared with groups given alcohol and/or paraquat. Also, the ratio of liver weight to body weight and ALP values(exception of paraquat plus selenium group) were increased by selenium. These results suggest that an adequate selenium confers marked protection against alcohol and paraquat-induced hepatotoxicity.

  • PDF

The Effect of Alisma canaliculatum and Polyporus umbellatus Extracts on Adipogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Stem cells (택사/저령 추출물이 사람 중간엽 줄기세포의 지방세포 분화에 미치는 영향)

  • Yu, Sung-ryul;Kim, Si-hyun;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.6
    • /
    • pp.1181-1190
    • /
    • 2018
  • Objective: This study investigated the effect of purified medical herb extracts such as Alisma canaliculatum and Polyporus umbellatuson adipogenic differentiation of human bone marrow derived mesenchymal stromal stem cells (hBMSCs). Methods: Two different medical herb were extracted using hot distilled water. The optimal concentration of extracts were fixed at 100 ng/ml by means of cell viability and cytotoxic assay. To test the adipogenic differentiation ability of extracts, we induced the adipogenesis of hBMSCs for 21 days. At day 5, the cell was harvested to check mRNA and protein expression level of adipogenic related factors. The efficacy of lipid droplet formation was evaluated using the oil-red O staining method at days 21. Results: Two different medical herb extracts have no toxicity on hBMSCs. And two different medical herb extracts significantly decreased formation of lipid droplet compared with control groups in hBMSCs. The A. canaliculatum extract group showed the lowest mRNA and protein expression level of adipossgenic related transcription factors. This data suggests that extract of A. canaliculatum and P. umbellata decrease the adipogenic differentiation of hBMSCs. Conclusions: Our findings indicate that water-extract of A. canaliculatum and P. umbellata will be useful therapeutic reagents for prevention of obesity related disease such as diabetes, hyperlipidemia, coronary artery disease, and osteoporosis.

Effect of Polyphenolic Compounds from Green Tea Leaves on Production of Hydroperoxide for Lipid Oxidation in Corn Oil-in-Water Emulsion (녹차 페놀류가 corn oil-in-water emulsion의 산화 중 hydroperoxide 생성에 미치는 영향)

  • Cho, Young-Je;Kim, Byung-Gyu;Chun, Sung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Effect of polyphenolic compounds from green tea leaves and surfactant micelles on lipid oxidation in corn oil-in-water emulsion (O/W) wag determined. Concentrations of polyphenolic compound and surfactant in continuous phase of O/W were measured. Particle size of O/W with 17 mM Brij 700 and 5% corn oil increased with increasing concentration of polyphenolic compound (100-200 ppm). Concentration of surfactant in the continuous phase was lower than that of control. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in O/W emulsions containing polyphenolic compounds decreased with increasing concentration of polyphenolic compounds (100-200 ppm). Inhibition of hydroperoxide and headspace hexanal produced via lipid oxidation by polyphenolic compounds in O/W was BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin >(+)-catechin.

Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism

  • Pantha, Rubee;Lee, Jae-Ho;Bae, Jae-Hoon;Koh, Eun Hee;Shin, Minsang;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.476-481
    • /
    • 2021
  • Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF