• 제목/요약/키워드: linker peptide

검색결과 18건 처리시간 0.051초

The High Production of Multimeric Angiotensin-converting-enzyme-inhibitor in E. coli

  • Park Je-Hyoen;Kim Sun-Hoi;Ahn Sun-Hee;Lee Jong-Hee;Kim Young-Sook;Lee Sang-Jun;Kong In-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제4권2호
    • /
    • pp.84-87
    • /
    • 2001
  • Multimeric angiotensin-converting-enzyme-inhibitor (ACE}) containing a trypsin cleavable linker peptide between ACEI was constructed. We made synthetic DNA coding for the ACEI peptide with asymmetric and complementary cohesive ends of linker nucleotides. A tandemly repeated DNA cassette for the expression of concatameric short peptide multimers was constructed by ligating the basic units. The resultant multimeric peptide expressed as soluble and trypsin treated peptide was shown at the same retention time with chemically synthetic ACEI by HPLC. The present results showed that the technique developed for the production of the ACEI multimers with trypsin cleavable linker peptides can be generally applicable to the production of short peptide.

  • PDF

Solution Structure of the D/E Helix Linker of Skeletal Troponin-C: As Studied by Circular Dichroism and Two-Dimensional NMR Spectroscopy

  • 이원태;G. M. Anatharamaiah;Herbert C. Cheung;N. Rama Krishna
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.57-62
    • /
    • 1998
  • We have synthesized a 17-residue peptide with the amino acid sequence RQMKEDAKGKSEEELAD corresponding to residues 84-100 of chicken skeletal troponin C. This stretch of the protein sequence is in the middle one-third of the 32-residue 9-turn α-helix that connects the two globular domains of the dumbell-shaped molecule and includes the D/E linker helix. We describe here the solution conformation of the helix linker as studied by circular dichroism (CD) and two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. The NOE connectivities together with the vicinal $^3J_{N{\alpha}}$ coupling constants suggest that the peptide exists in a fast conformational equilibrium among several secondary structure: a nascent helix near the N-terminus, a helix, and a substational population of extended and random coil forms. In addition, two interresidue α-α NOEs are observed suggesting a bent structure with a bend that includes the single glycine in position 92. These results are consistent with the ideas that in neutral solution the D/E linker region of the central helix in troponin C can adopt a helical conformation and the central helix may have a segmental flexibility around Gly 92.

진통 펩타이드 K7DA의 혈액-뇌 관문을 통한 Vector-Mediated Delivery (Vector-Mediated Delivers of $^{125}I$-labeled Opioid Peptide, $[Lys^7$]dermorphin (K7DA), through the Blood-Brain Barrier)

  • 강영숙
    • Biomolecules & Therapeutics
    • /
    • 제5권1호
    • /
    • pp.53-58
    • /
    • 1997
  • $[Lys^7$]dermorphin, abbreviated K7DA, which has structural features similar to a metabolically stable $\mu$-opioid peptide agonist $[D-Arg^2, Lys^4$]dermorphin analogue (DALDA), but is intrinsically more potent with respect to binding to the $\mu$-opioid peptide receptor. The present studies report on attempts to enhance brain uptake of systemically administered K7DA by conjugation to a complex of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the blood-brain barrier (BBB). SA-OX26 conjugate mediates BBB transport of biotinylated therapeutics. The K7DA is monobiotinylated at the $\varepsilon$-amino group of the $[Lys^7$] residue with cleavable linker using NHS-SS-biotin. The brain uptake of $^{125}I$ labeled biotinylated K7DA ($^{125}I$-bio-SSa-K7DA) was very small and rapidly metabolized after intravenous injection. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the $^{125}I$-bio-55-K7DA bound to the SA-OX26 conjugate $^{125}I$-bio-SS-K7DA/SA-OX26) was 0.14$\pm$0.01, a level that is 2-fold greater than the brain uptake of morphine. The cleavability of the disulfide linker in vivo in rat plasma and brain was assessed with gel filtration HPLC and intravenous injection of labeled opioid chimeric peptides. The disulfide linker is stable in plasma in vivo but is cleaved in rat brain in vivo. In conclusion, these studies show that delivery of these potential opioid peptides to the brain may be improved by coupling them to vector-mediated BBB drug delivery system.

  • PDF

Biological Activity of Multifunctional Oligopeptide Derivatives

  • Kim, Bo Mi
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.86-93
    • /
    • 2016
  • The peptide sequences, GHK(Gly-His-Lys) and KTTKS(Lys-Thr-Thr-Lys-Ser), using a collagen stimulator recently were manipulated at N-terminal as a multifunctional peptide derivative with PEG(polyethyleneglycol) linker connected to gallic acid which presents anti-inflammatory activity. The multifunctional peptide derivatives were obtained in a normal peptide preparation method through SPPS(solid phase peptide synthesis) using Fmoc chemistry and a carboxyl group insertion reaction of PEG-3,4,5-triacetoxy benzoate by using potassium tert-butoxide and ethyl bromoacetate, which was separated by Sephadex DEAE. It gave a good compromise to a cosmetic application for cell cytotoxicity, anti-wrinkle, and anti-inflammation.

Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes

  • Kim, Yong-Mo;Lee, Sang Mee;Chung, Hye-Shin
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.606-610
    • /
    • 2013
  • Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and ${\beta}$-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo ($t_{1/2}$ <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA.

1H, 15N, and 13C backbone assignments and secondary structure of the cytoplasmic domain A of mannitol trasporter IIMannitol from Thermoanaerobacter Tencongensis phosphotransferase system

  • Lee, Ko-On;Suh, Jeong-Yong
    • 한국자기공명학회논문지
    • /
    • 제19권1호
    • /
    • pp.42-48
    • /
    • 2015
  • The mannitol transporter Enzyme $II^{Mtl}$ of the bacterial phosphotransferase system has two cytoplasmic phosphoryl transfer domains $IIA^{Mtl}$ and $IIB^{Mtl}$. The two domains are linked by a flexible peptide linker in mesophilic bacterial strains, whereas they are expressed as separated domains in thermophilic strains. Here, we carried out backbone assignment of $IIA^{Mtl}$ from thermophilic Thermoanaerobacter Tencongensis using a suite of heteronuclear triple resonance NMR spectroscopy. We have completed 94% of the backbone assignment, and obtained secondary structural information based on torsion angles derived from the chemical shifts. $IIA^{Mtl}$ of Thermoanaerobacter Tencongensis is predicted to have six ${\beta}$ strands and six ${\alpha}$ helices, which is analogous to $IIA^{Mtl}$ of Escherichia coli.

Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications

  • Zhang, Guoyan;An, Yingfeng;Zabed, Hossain M.;Guo, Qi;Yang, Miaomiao;Yuan, Jiao;Li, Wen;Sun, Wenjin;Qi, Xianghui
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.179-190
    • /
    • 2019
  • Bacillus subtilis spore surface display (BSSD) technology is considered to be one of the most promising approaches for expressing heterologous proteins with high activity and stability. Currently, this technology is used for various purposes, such as the production of enzymes, oral vaccines, drugs and multimeric proteins, and the control of environmental pollution. This paper presents an overview of the latest developments in BSSD technology and its application in protein engineering. Finally, the major limitations of this technology and future directions for its research are discussed.

Phage Display 방법을 이용한 B형 간염 바이러스의 Terminal Protein 특이 scFv 항체 생산 (Terminal Protein-specific scFv Production by Phage Display)

  • 이명신;권명희;박선;신호준;김형일
    • IMMUNE NETWORK
    • /
    • 제3권2호
    • /
    • pp.126-135
    • /
    • 2003
  • Background: One of the important factors in the prognosis of chronic hepatitis B patient is the degree of replication of hepatitis B virus (HBV). It has been known that HBV DNA polymerase plays the essential role in the replication of HBV. HBV DNA polymerase is composed of four domains, TP (Terminal protein), spacer, RT (Reverse transcriptase) and RNaseH. Among these domains, tyrosine, the $65^{th}$ residue of TP is an important residue in protein-priming reaction that initiates reverse transcription. If monoclonal antibody that recognizes around tyrosine residue were selected, it could be applied to further study of HBV replication. Methods: To produce TP-specific scFv (single-chain Fv) by phage display, mice were immunized using synthetic TP-peptide contains $57{\sim}80^{th}$ amino acid residues of TP domain. After isolation of mRNA of heavy-variable region ($V_H$) and light-chain variable region ($V_L$) from the spleen of the immunized mouse, DNA of $V_H$ and $V_L$ were obtained by RT-PCR and joined by a DNA linker encoding peptide (Gly4Ser)3 as a scFv DNA fragments. ScFv DNA fragments were cloned into a phagemid vector. scFv was expressed in E.coli TG1 as a fusion protein with E tag and phage gIII. To select the scFv that has specific affinity to TP-peptide from the phage-antibody library, we used two cycles of panning and colony lift assay. Results: The TP-peptide-specific scFv was isolated by selection process using TP-peptide as an antigen. Selected scFv had 30 kDa of protein size and its nucleotide sequences were analyzed. Indirect- and competitive-ELISA revealed that the selected scFv specifically recognized both TP-peptide and the HBV DNA polymerase. Conclusion: The scFv that recognizes the TP domain of the HBV DNA polymerase was isolated by phage display.

강도가 제어된 인공피부 진피를 활용한 기능성 펩타이드의 프로콜라겐 생합성 분석 (Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis)

  • 변진아;신성규;한사라;조성우;임준우;정재현
    • 대한화장품학회지
    • /
    • 제44권4호
    • /
    • pp.419-425
    • /
    • 2018
  • 본 연구에서는 가교 분자를 사용하여 0.7 kPa에서 17.7 kPa까지 다양한 강도를 갖는 콜라겐 겔을 성공적으로 제조하였다. 가교된 콜라겐 겔에 다공성 기공을 도입하고 진피세포를 내부에 담지하여, 겔 강도에 따른 세포 성장 및 거동을 확인하였다. 상대적으로 강도가 높은 겔에서 진피세포의 프로콜라겐 생합성이 47 ng에서 32 ng까지 감소하는 것을 확인하였다. 이렇게 제조된 인공피부 진피에 아데노신을 처리하였을 때, 특정 강도를 갖는 콜라겐 겔에서 프로콜라겐 생합성이 감소하는 것을 확인하였다. 반면에 기능성 펩타이드를 처리하였을 때는 프로콜라겐 생합성이 콜라겐 겔의 강도에 크게 영향을 받지 않는 것을 확인할 수 있었다. 이러한 결과는 강도가 제어된 인공피부 제조 및 응용, 나아가 다양한 조직공학 분야의 기반 기술로 활용 가능하리라 기대된다.