The objective of the present study was to analyze genetic distances, variation and characteristics of individuals in rainbow trout, Oncorhynchus mykis using amplified fragment length polymorphism (AFLP) method as molecular genetic technique, to detect AFLP band patterns as genetic markers, and to compare the efficiency of agarosegel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively. Using 9 primer combinations, a total of 141 AFLP bands were produced, 108 bands (82.4%) of which were polymorphic in AGE. In PAGE, a total of 288 bands were detected, and 220 bands (76.4%) were polymorphic. The AFLP fingerprints of AGE were different from those of PAGE. Separation of the fragments with low molecular weight and genetic polymorphisms revealed a distinct pattern in the two gel systems. In the present study, the average bandsharing values of the individuals between two populations apart from the geographic sites in Kangwon-do ranged from 0.084 to 0.738 of AGE and PAGE. The bandsharing values between individuals No.9 and No. 10 showed the highest level within population, whereas the bandsharing values between individuals No.5 and No.7 showed the lowest level. As calculated by bandsharing analysis, an average of genetic difference (mean$\pm$SD) of individuals was approximately 0.590$\pm$0.125 in this population. In AGE, the single linkage dendrogram resulted from two primers (M11+H11 and M13+H11), indicating six genetic groupings composed of group 1 (No.9 and 10), group 2 (No. 1, 4, 5, 7, 10, 11, 16 and 17), group 3 (No. 2, 3, 6, 8, 12, 15 and 16), group 4 (No.9, 14 and 17), group 5 (No. 13, 19, 20 and 21) and group 6 (No. 23). In AGE, the genetic distances among individuals of between-population ranged from 0.108 to 0.392. In AGE, the shortest genetic distance (0.108) displaying significant molecular differences was between individuals No.9 and No. 10. Especially, the genetic distance between individuals No. 23 and the remnants among individuals within population was highest (0.392). Additionally, in the cluster analysis using the PAGE data, the single linkage dendrogram resulted from two primers (M12+H13 and M11+H13), indicating seven genetic groupings composed of group 1 (No. 15), group 2 (No. 14), group 3 (No. 11 and 12), group 4 (No.5, 6, 7, 8, 10 and 13), group 5 (No.1, 2, 3 and 4), group 6 (No.9) and group 7 (No. 16). By comparison with the individuals in PAGE, genetic distance between No. 10 and No. 7 showed the shortest value (0.071), also between No. 16 and No. 14 showed the highest value (0.242). As with the PAGE analysis, genetic differences were certainly apparent with 13 of 16 individuals showing greater than 80% AFLP-based similarity to their closest neighbor. The three individuals (No. 14, No. 15 and No. 16) of rainbow trout between two populations apart from the geographic sites in Kangwon-do formed distinct genetic distances as compared with other individuals. These results indicated that AFLP markers of this fish could be used as genetic information such as species identification, genetic relationship or analysis of genome structure, and selection aids for genetic improvement of economically important traits in fish species.