• 제목/요약/키워드: link quality control

검색결과 207건 처리시간 0.022초

무선 센서 네트워크에서 가변주기를 이용한 적응적인 전송파워 제어 기법 (Adaptive Link Quality Estimation in Wireless Sensor Networks)

  • 이정욱;정광수
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권11호
    • /
    • pp.1081-1085
    • /
    • 2010
  • 무선 센서 네트워크에서는 전송파워 제어를 이용하여 전력소비를 줄이고 채널간의 간섭을 줄일 수 있다. 무선 링크의 품질은 시간 및 공간적인 상황에 따라 변화하기 때문에 링크의 실패가 빈번하다. 기존의 전송파워 제어 기법은 링크 품질 변화에 적응할 수 있도록 주기적으로 이웃 노드와 비컨 패킷을 주고 받아 동적으로 전송파워를 조절하도록 하였다. 하지만 전송파워를 조절하는 주기에 따라서 링크 품질의 변화에 적용하는 시간과 트래픽 및 에너지 오버헤드에 영향을 줄 수 있다. 본 논문에서는 링크의 품질변화에 따른 동적인 전송파워 제어 기법과 전송파워 제어 주기를 변경하는 기법을 제안한다. 이를 통하여 링크가 불안정할 때에는 전송파워 제어 주기를 감소시켜 민첩하게 링크 품질을 유지하며, 링크가 안정할 때는 전송파워 제어 주기를 증가시켜 이에 따른 프로토콜의 오버헤드를 줄이고자 하였다.

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Improving the Performance of Multi-Hop Wireless Networks by Selective Transmission Power Control

  • Kim, Tae-Hoon;Tipper, David;Krishnamurthy, Prashant
    • Journal of information and communication convergence engineering
    • /
    • 제13권1호
    • /
    • pp.7-14
    • /
    • 2015
  • In a multi-hop wireless network, connectivity is determined by the link that is established by the receiving signal strength computed by subtracting the path loss from the transmission power. Two path loss models are commonly used in research, namely two-ray ground and shadow fading, which determine the receiving signal strength and affect the link quality. Link quality is one of the key factors that affect network performance. In general, network performance improves with better link quality in a wireless network. In this study, we measure the network connectivity and performance in a shadow fading path loss model, and our observation shows that both are severely degraded in this path loss model. To improve network performance, we propose power control schemes utilizing link quality to identify the set of nodes required to adjust the transmission power in order to improve the network throughput in both homogeneous and heterogeneous multi-hop wireless networks. Numerical studies to evaluate the proposed schemes are presented and compared.

무선 센서 네트워크를 위한 온도인지형 전송파워 제어 기법 (T2PC: Temperature-aware Transmission Power Control Scheme for Wireless Sensor Networks)

  • 이정욱;정광수
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권5호
    • /
    • pp.403-408
    • /
    • 2010
  • 센서 노드는 사막, 도시, 데이터 센터등과 같이 온도의 변화가 심한 환경에 설치될 수 있다. 특히 온도가 증가하게 되면 설정한 파워에 비해 출력되는 파워가 감쇄되기 때문에 RSSI와 같은 링크 품질의 저하를 초래하며, 패킷 손실이 발생될 수 있다. 무선 환경에서 온도의 변화를 보상하기 위한 노드간에 링크 품질의 변화를 파악하고 일련의 피드백 과정을 통하여 전송파워 제어하는 기존의 방법이 있으나, 추가적인 제어 패킷들이 많이 발생하는 문제점이 있다. 본 논문에서는 이러한 온도 변화에 따른 링크품질의 유지를 위하여 T2PC(Temperature-aware Transmission Power Control)를 제안하였다. T2PC는 각 노드에서 자체적으로 얻을 수 있는 온도정보를 이용하여 전송파워를 제어함으로서 감쇄된 랭크 품질을 보상하도록 하였다. 또한 기존의 피드백을 이용한 전송파워 제어 기법보다 적은 컨트롤 패킷으로 패킷 수신율을 향상시켰다.

Novel Active Voltage Quality Regulator with Adaptive DC-Link Voltage Control

  • Xiao, Guochun;Zeng, Zhong;Liu, Kai;Hu, Zhiliang;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.880-889
    • /
    • 2011
  • In this paper, a novel Active Voltage Quality Regulator (AVQR) topology with a thyristor rectifier and an adaptive dclink voltage control strategy are proposed. The proposed AVQR can efficiently mitigate the long duration variations (e.g. undervoltages/overvoltages), voltage imbalances and voltage harmonics. Compared with conventional AVQRs, it can regulate the load voltage very well with a much lower dc-link voltage. This is accomplished by replacing the diode rectifier with a thyristor rectifier. Moreover, its dc-link voltage can vary with the deviations of the supply voltage through the proposed adaptive dc-link voltage control strategy. All of these contribute to its significantly higher efficiency for online operating, which is very important and attractive for many applications. The proposed topology and control strategy are theoretically analyzed in detail. Simulation results are also provided in the paper. Finally, the feasibility and effectiveness of the proposed method are verified by means of experimental results from a 2kVA prototype. Both of the simulation and experimental results show that the proposed AVQR can achieve a much higher efficiency and similar regulation performance when compared with the conventional ones.

소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법 (A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters)

  • 인효철;김석민;박성수;이교범
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.

Link Quality Based Transmission Power Control in IEEE 802.15.4 for Energy Conservation

  • Nepali, Samrachana;Shin, Seokjoo
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1925-1932
    • /
    • 2016
  • One of the major challenges in the design of wireless sensor network (WSN) is to reduce the energy consumption of sensor nodes for prolonging the network lifetime. In the sensor network, communication is the most energy consuming event. Therefore, most of the energy saving techniques conserve energy by adjusting different parameters of the trans-receiver. Among them, one of the promising methods is the transmission power control (TPC). In this paper, we investigated the effects of the link quality based TPC scheme employed to the IEEE 802.15.4 standard for energy saving. The simulation results demonstrated that the link quality based TPC scheme works effectively in conserving energy as compared to the conventional IEEE 802.15.4.

주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계 (Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

자동차용 컨트롤 링크 업셋 용접부의 용접성 및 피로강도 향상에 관한 유한요소 해석 (Finite Element Analysis on Welded Part of control Link for Automobile)

  • 조해용;권혁홍;이봉규
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.63-70
    • /
    • 2001
  • This study is concerned with Finite Element Analysis on welded part of control link fur automobile. For analysis, control link was modeled into two parts, ring and rod. Heating condition, temperature distributions and fatigue fracture strength were analyzed using "HEAT III" and "NDURE" module of NISA II. Metal flow in the process of welding was simulat- ed by $DEFORM^{TM}2D$.The analyzed results were compared with experimental inspection. Quality of welded part was able to be improved by controlling metal flow in the process of welding by increase the friction constant of ring part. Heat transfer analysis and flow simulations were in good agreement wish welding experiments.

  • PDF

공진형 직류 링크 인버터의 공진 펄스 제어기 (A novel resonant pulse control in resonant DC link inverter)

  • 유동욱;원충연
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.152-158
    • /
    • 1996
  • A novel resonant pulse control technique which generates high-quality sinusoidal output voltage from a resonant dc link inverter is presented for UPS applicatons. The proposed control technique limits resonant voltae overshoot without any passive or active clamp circuit, resulting in resonant pulses iwth uniform amplitude and high efficiency. The output voltage is controlled by the third order contorller iwth an inner loop of th efilter inductor current and the feedforward controller. Analysis and design of the proposed control technique are illustrated and verified on a 5kVA experimental unit.

  • PDF