• Title/Summary/Keyword: link interference

Search Result 386, Processing Time 0.022 seconds

Application of Network Coding to IEEE 802.16j Mobile Multi-hop Relay Network for Throughput Enhancement

  • Lee, Kyung-Jun;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.412-421
    • /
    • 2008
  • We observe simultaneous transmission of relay stations (RSs) allowed in current IEEE 802.16j draft standard for multi-hop relay networks may involve severe interference among the RSs, hence leading to throughput degradation. Allowing only 1/3 of the RSs to simultaneously transmit instead of 1/2 RSs as in the current draft standard reduces the interference but results in reduced throughput. To remedy this problem, we devise schemes to incorporate network coding at link-layer level (decode-and-forward) into the simultaneous transmission of RSs. Data movement is rearranged to maximize coding gain. Formula is derived to dictate exact movement of packets traveling between base station (BS) and mobile stations (MSs) via intermediate RSs. The frame structure in the current IEEE 802.16j draft standard does not allow broadcast needed for network coding. We devise a new frame structure which supports the broadcast. A new R-MAP (pointers to the burst data) is introduced to implement the broadcast. Since our new frame structure is used only for BS to RS or RS to RS communication, our schemes retain backward compatibility with legacy MSs based on IEEE 802.16e standard. Simulation based on simple configuration of RSs shows considerable improvement in terms of system throughput and round trip delay. For a 4-hop relay network with 1 BS and 4 RSs with symmetric traffic in uplink (UL) and downlink (DL), throughput is improved by 49% in DL and by 84% in UL traffic compared with IEEE 802.16j draft standard under the assumption that omni-directional antennae are used in BS and RSs.

Simple Precoding Scheme Considering Physical Layer Security in Multi-user MISO Interference Channel (다중 사용자 MISO 간섭 채널에서 물리 계층 보안을 고려한 간단한 프리코딩 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2019
  • In this paper, we propose a simple precoding vector design scheme for multi-user multiple-input single-output (MISO) interference channel when there are multiple eavesdroppers. We aim to obtain a mathematical closed-form solution of the secrecy rate optimization problem. For this goal, we design the precoding vector based on the signal-to-leakage plus noise ratio (SLNR). More specifically, the proposed precoding vector is designed to completely eliminate a wiretap channel capacity for refraining the eavesdroppers from detecting the transmitted information, and to maximize the transmitter-receiver link achievable rate. We performed simulation for the performance investigation. Simulation results show that the proposed scheme has better secrecy rate than the conventional scheme over all signal-to-noise ratio (SNR) range even though the special condition among the numbers of transmit antennas, transmitter-receiver links, and eavesdroppers is not satisfied.

Reverse-Link Performance of Synchronous Cellular DS-CDMA Networks in Dispersive Rician Multipath Fading Channels (디스퍼시브 리시안 다중경로 페이딩 채널에서 동기식 셀룰라 DS-CDMA, 네트워크의 역방향링크 성능)

  • Hwang Seung-Hoon;Hanzo Lajos
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the reverse-link performance of synchronous DS-CDMA cellular networks is investigated in Rician multipath fading environments. The system's performance is evaluated in terms of the achievable average bit error rate BER) and the user capacities of two different network layouts, namely those of a uniform grid of hexagonal multiple cells and a single isolated cell. In the multiple-cell scenario, the impact of the other cells' interference on the attainable capacity of the synchronous DS-CDMA uplink is investigated. Upon comparing both networks to a conventional asynchronous CDMA system, we demonstrate an achievable user capacity gain of $25\%$ to $56\%$ for synchronous uplink transmissions over that of the corresponding asynchronous transmission scenario at BER = $10^{-3}$.

The antenna azimuth correction method for a special purpose mobile video terminal tracking antenna system implementation (특수목적을 위한 이동형 영상 터미널 장비의 추적안테나 시스템에 적용하기 위한 방위각보정 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2541-2546
    • /
    • 2013
  • In this paper, we proposed on the azimuth correction method for a line-of-sight data-link tracking antenna system. Tracking antenna system is essential to maintain line-of-sight between moving object and data-link equipment. In order to calculate the azimuth and elevation between the moving object and antenna system, we used GPS data. also to match the each coordinate systems, we used geomagnetic sensor or beacon. However, the geomagnetic disturbance-prone terrain in places difficult to correct calibration. The first step, finds the location of the strongest RF signal, we should remember the difference between the reference point and the detected position of the antenna. The second step, we could communicate each other. And the azimuth angle is calculated by GPS values. Despite the geomagnetic interference, we can correct the azimuth angle quickly and easily.

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

A Study on Adaptive Linear MMSE Detector for DS-CDMA Reverse Link in Rayleigh Fading Environment (레일리 페이딩 환경하에서 DS-CDMA 역방향 링크에 적용 가능한 적응 선형 MMSE 수신기의 연구)

  • 안태기;이병섭;김성락;이정구
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.131-140
    • /
    • 1998
  • MAI(Multi-Access Interference) and fast channel variation due to the fading environment are the major problems in the mobile CDMA communication systems. Recently, interest has been increasing in applying the Adaptive Linear MMSE Detector to MAI cancellation in the CDMA reverse link. In this paper, we propose a modified Adaptive Linear MMSE Detector structure which can be used in Long-duration code CDMA system in the presence of independent Rayleigh fading. We use independent multiple tap-weight vector structure to cope with the variation of spreading sequence pattern between neighbor symbols because of the Long-duration code. In this case, more exact channel parameter estimation is required. To solve this problem, we use coherent CDMA structure which can track the channel parameters like amplitude and phase by employing the low power pilot channel in the CDMA reverse link.

  • PDF

The Reverse Link Performance Analysis of cdma2000 Cellular System considering Adaptive Array Antenna (적응 배열 안테나를 고려한 cdma2000 셀룰러 시스템의 역방향 링크 성능 분석)

  • Park, Jong-Yong;Kim, Hang-Rae;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • In this paper, the reverse link performance of imperfect power controlled cdma2000 cellular system that using array at a base station is analyzed, when MCGM beamforming algorithm and power control error is considered in shadowing. The blocking probability of the cdma2000 cellular system based on array parameters, E$\_$b//N$\_$0/ and interference statistics is calculated, and then the system capacity is calculated at a specific blocking probability. When the blocking probability is set 1 %, PCE(power control error) is 2 dB, M=2, 4, 8, 10, the capacity of cdma2000 is increased 2.3 ∼ 2.5 times higher than IS-95.

Analysis of Noise Sensitivity due to Image Wireless Transmission (링크암호 환경에서 이미지 데이터와 잡음의 영향)

  • Kim, KiHwan;Kim, HyeongRag;Lee, HoonJae;Ryu, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.211-220
    • /
    • 2018
  • The standard data link layer encryption provided by CCSDS has a structure that encodes HDLC frame into it using an AES algorithm. However, CCSDS is standard method has a structure in which the receiving side cannot request a re-activation when noise interference occurs over an unstable channel. SES Alarmed has a structure that enables the receiving side to additionally detect errors and perform re-activation requests in an operational structure similar to that of link encryption in CCSDS. The SES Alarmed related paper was intended to identify the optimum range of thresholds and identify data corruption due to channel noise. In this paper, the focus was on reducing the re-activation process if the HDLC frame, excluding the password Sync code, consistently exceeds any threshold levels. The HDLC frame order was changed and the results of using SES Alarmed were proposed and compared.

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Joint Optimization for Congestion Avoidance in Cognitive Radio WMNs under SINR Model

  • Jia, Jie;Lin, Qiusi;Chen, Jian;Wang, Xingwei
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.550-553
    • /
    • 2013
  • Due to limited spectrum resources and differences in link loads, network congestion is one of the key issues in cognitive radio wireless mesh networks. In this letter, a congestion avoidance model with power control, channel allocation, and routing under the signal-to-interference-and-noise ratio is presented. As a contribution, a nested optimization scheme combined with a genetic algorithm and linear programming solver is proposed. Extensive simulation results are presented to demonstrate the effectiveness of our algorithm.