• Title/Summary/Keyword: lines detection

Search Result 578, Processing Time 0.026 seconds

Vanishing Point Detection using Reference Objects

  • Lee, Sangdon;Pant, Sudarshan
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.300-309
    • /
    • 2018
  • Detection of vanishing point is a challenging task in the situations where there are several structures with straight lines. Commonly used approaches for determining vanishing points involves finding the straight lines using edge detection and Hough transform methods. This approach often fails to perform effectively when there are a lot of straight lines found. The lines not meeting at a vanishing point are considered to be noises. In such situation, finding right candidate lines for detecting vanishing points is not a simple task. This paper proposes to use reference objects for vanishing point detection. By analyzing a reference object, it identifies the contour of the object, and derives a polygon from the contour information. Then the edges of the detected polygon are used to find the vanishing points. Our experimental results show that the proposed approach can detect vanishing points with comparable accuracy to the existing edge detection based method. Our approach can also be applied effectively even to complex situations, where too many lines generated by the existing methods make it difficult to select right lines for the vanishing points.

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF

Fault Line Detection Methodology for Four Parallel Lines on the Same Tower

  • Li, Botong;Li, Yongli;Yao, Chuang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1217-1228
    • /
    • 2014
  • A method for faulted line detection of four parallel lines on the same tower is presented, based on four-summing and double-differential sequences of one terminal current. Four-summing and double-differential sequences of fault current can be calculated using a certain transformation matrix for parameter decoupling of four parallel transmission lines. According to fault boundary conditions, the amplitude and phase characteristics of four-summing and double-differential sequences of fault current is studied under conditions of different types of fault. Through the analysis of the relationship of terminal current and fault current, a novel methodology for fault line detection of four parallel transmission line on the same tower is put forward, which can pick out the fault lines no matter the fault occurs in single line or cross double lines. Simulation results validate that the methodology is correct and reliable under conditions of different load currents, transient resistances and fault locations.

Analyses of the Effect of Inserting Border Lines between Adjacent Color Regions on Detecting Boundaries (경계선 검출에 대한 인접 칼라 영역간 테두리 선 삽입 효과의 분석)

  • Yoo, Hyeon-Joong;Kim, Woo-Sung;Jang, Young-Beom
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.87-95
    • /
    • 2006
  • This paper presents the analyses of the effect of inserting border lines between different color regions on edge detection in color codes, and is not intended to present any new algorithm for color-code recognition. With its role to complement the RFID (radio frequency identification) and the wide and fast spread of digital cameras, an interest on color codes is fast increasing. However, the severe distortion of colors in obtained images prohibits color codes from expanding their applications. To reduce the effect of color distortion it is desirable to process the whole pixels in each color region statistically, instead of relying on some pixels sampled from the region. This requires segmentation, and the segmentation usually requires edge detection. To help detect edges not disconnected, we inserted border lines of the width of two pixels between adjacent color regions. Two colors were used for the border lines: one consisting of white pixels, and the other black pixels. The edge detection was performed on images with either of the two kinds of border lines inserted, and the results were compared to results without inserted border lines. We found that inserting black border lines degraded edge detection by causing zipper effect while inserting white border lines improved it compared to the cases without inserted border lines.

  • PDF

A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point (확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법)

  • Yoo, Ju Han;Kim, Dong Hwan;Lee, Seok;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

Stop-Line and Crosswalk Detection Based on Blob-Coloring (블럽칼라링 기반의 횡단보도와 정지선 검출)

  • Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.799-806
    • /
    • 2011
  • This paper proposes an algorithm to detect the stop line and crosswalk on the road surface using edge information and blob coloring. The detection has been considered as an important area of autonomous vehicle technologies. The proposed algorithm is composed of three phases: 1) hypothesis generation of stop lines, 2) hypothesis generation of crosswalks, and 3) hypothesis verification of stop lines. The last two phases are not performed if the first phase does not provide a hypothesis of a stop line. The last one is carried out by the combination of both hypotheses of stop lines and crosswalks, and determines the stop lines among stop line hypotheses. The proposed algorithm is proven to be effective through experiments with various images captured on the roads.

Recognition of Lanes, Stop Lines and Speed Bumps using Top-view Images (탑뷰 영상을 이용한 차선, 정지선 및 과속방지턱 인식)

  • Ahn, Young-Sun;Kwak, Seong Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1879-1886
    • /
    • 2016
  • In this paper, we propose a real-time recognition algorithm of lanes, stop lines and speed bumps on roads for autonomous vehicles. First, we generate a top-view using the image transmitted from a camera that is installed to see the front of a vehicle. To speed up the processing, we simplify the mapping algorithm in constructing a top-view wherein the region of interest (ROI) is concerned. The features of lanes, stop lines and speed bumps, which are composed of lines, are searched in the edge image of the top-view, then followed by labeling and clustering specialized to detect straight lines. The width of lines, distances from the center of a vehicle, and curvature of each cluster are considered to select final candidates. We verify the proposed algorithm on real roads using the commercial car (KIA K7) which is converted into an autonomous vehicle.

Automatic detection of tooth cracks in optical coherence tomography images

  • Kim, Jun-Min;Kang, Se-Ryong;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.41-50
    • /
    • 2017
  • Purpose: The aims of the present study were to compare the image quality and visibility of tooth cracks between conventional methods and swept-source optical coherence tomography (SS-OCT) and to develop an automatic detection technique for tooth cracks by SS-OCT imaging. Methods: We evaluated SS-OCT with a near-infrared wavelength centered at 1,310 nm over a spectral bandwidth of 100 nm at a rate of 50 kHz as a new diagnostic tool for the detection of tooth cracks. The reliability of the SS-OCT images was verified by comparing the crack lines with those detected using conventional methods. After performing preprocessing of the obtained SS-OCT images to emphasize cracks, an algorithm was developed and verified to detect tooth cracks automatically. Results: The detection capability of SS-OCT was superior or comparable to that of trans-illumination, which did not discriminate among the cracks according to depth. Other conventional methods for the detection of tooth cracks did not sense initial cracks with a width of less than $100{\mu}m$. However, SS-OCT detected cracks of all sizes, ranging from craze lines to split teeth, and the crack lines were automatically detected in images using the Hough transform. Conclusions: We were able to distinguish structural cracks, craze lines, and split lines in tooth cracks using SS-OCT images, and to automatically detect the position of various cracks in the OCT images. Therefore, the detection capability of SS-OCT images provides a useful diagnostic tool for cracked tooth syndrome.