• Title/Summary/Keyword: liner stress

Search Result 99, Processing Time 0.031 seconds

Theoretical and Finite Element Analysis for Structural Strength of Paperboard-stacked Structure (종이성형구조물의 구조적 강도에 대한 이론분석과 유한요소해석)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 1999
  • Not only is it important that the physical properties of the paperboards be appropriate for the intended end use, but the proper arrangement of the component in the built-up board is essential for attaining the optimum moment of inertia and the maximum load-carrying ability in a box. It is known to be impossible to estimate the stress distribution and deflection pattern by experiments or theoretical analysis when the corrugated fiberboard get the bending force. This study was tried theoretical and finite element analysis to analyze structural strength characteristics of corrugated fiberboards. If the linerboard and corrugating medium of every corrugated fiberboards is made from the same material, the location of neutral axis comes close to inside liner in order of DMA, DM, DMB, SW and DW, and moment of inertia of area decreases in order of DMA, DMB, DW, DM and SW. With the finite element analysis, deflection of applied loads represented SW, DM, DMA, and TW in the order of their value.

  • PDF

Fracture Mechanic's Approach on Retardation Behaviors under Overloading (과대하중작용 시 균열성장 지연거동에 대한 파괴역학적 정리)

  • Kang, Yong-Goo;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-89
    • /
    • 2012
  • In order to clarify the effect of overload on crack growth behaviors, fatigue tests for overload were carried out for round plain specimens of SM45C steel. In the experiment, typical semi-elliptical crack shape was found and further crack growth behaviors were tested. Using three types of single overload fatigue tests, Crack growth retardation phenomenon were examined. The growth rate of surface crack(da/dN) during retardation period was analyzed in terms of ${\Delta}K$ and ${\Delta}K_{eff}$. On the growth rate of surface crack analyzed by ${\Delta}K$, the dependence of overload stress levels appears. However, on the growth rate by ${\Delta}K_{eff}$ obtained by Willenborg analysis, there is a liner relationship between da/dN and ${\Delta}K_{eff}$ with narrow scatter band.

Radial Thickness of Ice Jam in Channel Bends

  • Yoon, Sei-eui;Lee, Jong-tae
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.61-71
    • /
    • 1990
  • The characteristics of radial thickness of ice jam at the center part of channel bends were analyzed briefly in this paper. Jam thickness in channel bends increases both toward the inner bank, and dowmstream. For this study, slope at the jam's underside was assumed to be liner with similarity of radial slope of bed in alluvial bends. Radial slope at the jam's underside in floating ice elements was estimated using the force equilibrium theory in the radial direction. The eqution which can be estimated the radial slope of ice jam was suggested using Falcon and Kennedy's bed layer theory. Experimental data, which were measured at the center part of cross-section in a single 180-degree bend, were compared to the calculated values using the suggested equtions. The result shows that the calcultated values were smaller than the measured ones. Ot is considered that the estimated value of shear stress in the radial direction may be smaller than the actual and two-layer model may be not suibable for alluvial bend flow.

  • PDF

Stress Analysis and Structural Design of FRP Pressure Vessel (복합재료 압력용기의 응력해서 및 구조설계)

  • Yun, Gwang-Jun;Kim, Tae-Uk;Jeon, Ui-Jin
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.49-55
    • /
    • 1990
  • Filament-Wound composite pressure vessels offer significant weight saving over the conventional metal pressure vessels. S-2 glass/epoxy pressure vessel was designed, fabricated and tested. It was considered, in the analysis that the matrix and the metal liner of FRP pressure vessel shared the internal pressure. The thicknesses of hoop and helical layers were determinded by the computer program developed for the design of FRP/Metal structural pressure vessel. The computer program increased the structural efficiency about 14% comparing with the netting analysis. The experimental measurement on the deformation by internal pressure agrees with the theoretical analysis within the accuracy of 5%.

  • PDF

The Slope Stabilization of Solid Waste Landfill Liner System (폐기물매립장의 사면차수체계 안정화 연구)

  • Shin, Eunchul;Kim, Jongin;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • As the natural aggregates such as sand and clay are getting exhausted, the quantity of utilizing geosynthetics is being increased in the solid waste landfill. Especially, the waste landfills have been constructed at the gorge in the mountainous area and reclaimed land from the sea in the Korean Peninsula. Those areas are not favorable for construction of waste landfill in geotechnical engineering aspect. In this study, the frictional characteristics of geosynthetics that used in the waste landfill were estimated. Then, the studies of the behavior of geosynthetics and stability of LDCRS (Leachate Detection, Collection, and Removal System) of side slope were conducted in the waste landfill by means of the pilot test, and numerical analysis. Geocomposite which is combined type or separated type is influenced on the strain itself, and also implicated in the stress and strain of geomembrane at the lower layer. The strain on the combined type of geocomposite is about 50% smaller than that of the separated type at the side slope. The lateral displacement and settlement of top at the slope with the separated type are three times greater than that of the combined type. In the numerical analysis, discontinuous plans in between ground and geosynthetic, geosynthetic and geosynthetic, goesynthetic and waste have been modeled with the interface element. The results gave a good agreement with the field large-scale model test. The relative displacements of geosynthetics were also investigated and hence the interface modeling of liner system is appropriate for analysis of geosynthetics liner system in the waste landfill.

  • PDF

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

Coupled Thermal-Structural Analysis of the Combustor Assembly of 200kW Micro Gas Turbine Engine (200kW급 마이크로 가스터빈 연소기의 열-구조 연성 해석)

  • Park, Sangjin;Rhee, Huinam;Lee, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4093-4099
    • /
    • 2014
  • In this study, the thermal-structural behavior of the combustor assembly of 200 kW micro gas turbine system was performed. The typical combustor assembly consists of a Liner, Inner & Outer Case, Burner and Nozzle ring, etc. There are some gaps and friction elements between the components to compensate for the different thermal expansions of various components. Therefore, the developed finite element model includes nonlinear elements. The boundary support conditions of the combustor assembly significantly affect the stress distribution due to the high temperature gradient. This paper deals with parametric studies to quantitatively determine the effects of the variation of the support conditions on the stress distribution and deformation of various components of combustor assembly. These results may be useful for the design of the combustor assembly.

Stability Analysis of Waste Landfill Using Multi-interface Element Numerical Method (복합 경계면요소 수치해석에 의한 매립지 안정성 해석)

  • 장연수;김홍석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2004
  • A finite element nonlinear stress-deformation model with multi-interface element is applied to the stability analysis of waste landfill slope. Strength parameters of waste and geosynthetic materials are obtained from the triaxial test of waste and the direct shear test of geosynthetics, respectively. The landfill models used for the numerical models are fit to regulations of the Korean waste management law. The results of the strength tests showed linear behavior for the waste and nonlinear behavior for the eosynthectic materials. The stability analysis with multi-interface element for the geosynthetic materials in the liner system showed large shear stress and slippage at the boundary of the foundation and the slope of the waste fill. This analysis verified the necessity of multi-interface analysis for waste landfills with composite liners.

Evaluation of the Cryogenic Characteristics of Composite/Aluminum Ring Specimens (복합재/알루미늄 링 시편의 극저온 특성 평가)

  • 김명곤;강상국;김천곤;공철원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, the characteristics of filament wound composite/aluminum ring specimens were investigated at cryogenic temperature. The ring specimens were manufactured using carbon fibre and Type B epoxy resin which had been developed for cryogenic use. As a result of measuring thermal strains at -150℃, it was found that compressive thermal stress was induced in composite part on the contrary, tensile thermal stress in aluminum part which was about 32% of yield stress and in turn, caused aluminum to be yielded at lower load level. In addition, Thermal strains which resulted from finite element analysis showed good agreement with those of the experiment. After 6 mechanical loading cycles had been applied to the ring specimen at -150℃, tensile tests were performed at -150℃ using a split disk fixture. As a result, it was shown that composite strength in a liner-composite tank structure which is for the use of cryogenic propellant tank would be decreased by auto-frettage pressure which is applied to it.