• Title/Summary/Keyword: linearly and uniformly distributed loads

Search Result 6, Processing Time 0.017 seconds

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.297-313
    • /
    • 2022
  • The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • Based on a refined shear deformation finite strip, transient vibrations of graphene oxide powder (GOP) reinforced plates due to external pulse loads have been investigated. The plate has uniformly and linearly distributed GOPs inside material structure. Applied pulse loads have been selected as sinusoidal, linear and blast types. Such pulse loads result in transient vibrations of the GOP-reinforced plates which are not explored before. Finite strip method (FSM) has been performed for solving the equations of motion and then inverse Laplace transform technique has been employed to derive transient responses due to pulse loading. It is reported in this study that the transient responses of GOP-reinforced plates are dependent on GOP dispersions, GOP volume fraction, type of pulse loading, loading time and load locations.

Interactions in transversely isotropic new modified couple stress solid due to Hall current, rotation, inclined load with energy dissipation

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2024
  • This paper is concerned with the disturbances in a transversely isotropic new modified couple stress homogeneous thermoelastic rotating medium under the combined influence of Hall currents, magnetic fields, and mechanical sources represented by inclined loads. The application of Laplace and Fourier transform techniques are used for the derivation of analytical expressions for various physical quantities. As an application,the bounding surface is subjected to uniformly and linearly distributed force (mechanical force). Present model contains length scale parameters that can capture the size effects. Numerical inversion techniques has been used to provide insights into the system's behavior in the physical domain. The graphical representation of numerical simulated results has been presented to emphasize the impact of rotation and inclined line loads on the system, enhancing our understanding of the studied phenomena. Further research can extend this study to investigate additional complexities and real-world applications.

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen;Zakhmi, Himanshi
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.295-305
    • /
    • 2019
  • The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.

Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.529-537
    • /
    • 2022
  • The present research is to study the effect of inclined load in a two-dimensional homogeneous orthotropic magneto-thermoelastic solid without energy dissipation with fractional order heat transfer in generalized thermoelasticity with two-temperature. We obtain the solution to the problem with the help of Laplace and Fourier transformations. The field equations of displacement components, stress components and conductive temperature are computed in transformed domain. Further the results are computed in physical domain by using numerical inversion method. The effect of fractional order parameter and inclined load has been depicted on the resulting quantities with the help of graphs.

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.