• 제목/요약/키워드: linear transforms

검색결과 111건 처리시간 0.029초

Line Spectral Frequency와 음성신호의 주파수 분포에 관한 연구 (A Study on the Relation Between the LSF's and Spectral Distribution of Speech Signals)

  • 이동수;김영화
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.430-436
    • /
    • 1988
  • LSF(Line Spectral Frequency) derived from LPC has known as a very useful transmission parameter of speech signals, for it has a good linear interpolation characteristics and a low spectrum distortion at low bit rates coding. This paper presents that it is possible to extract directly the formant frequencies of speech signals from LSF parameter without application of FFT algorithm by comparing the distribution of LSF parameter with the frequency distribution of analysis filter. This paper suggests the advanced algorithm that results in improving the speed of convergence at analytic solution method. Also, for the flexibility of parameters, the process that transforms from LSF to LPC is presented.

  • PDF

전기유압 속도제어 시스템의 귀환 선형화 제어 (Feedback linearization of the electro-hydraulic velocity control system)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

소형 수문용 랙-피니언의 접촉 피로수명 (Contact Fatigue Life of Rack-Pinion for Small-Sized Sluice Gate)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.299-305
    • /
    • 2017
  • Gate-lifting devices in small- to mid-sized sluice gates mostly employ the mechanical roller rack pinion (RRP) system. This RRP system, which consists of a rack-bar and a pinion, transforms a rotation motion into a linear one. The rack-bar has a series of roller trains that mesh with the pinion. In this study, we adopt an exact involute-trochoid tooth profile of the pinion to obtain a higher contact fatigue strength using the profile modification coefficient. Further, we determine the contact forces and investigate Hertz contact stresses to predict the pitting life of the pinion according to varying the shape design parameters. The results indicate that the design fatigue life of an RRP system for sluice gate can be achieved only when the design value of the profile modification coefficient reaches or exceeds a certain level.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

초음파 센서를 이용한 변위 측정 시스템 개발 (A Development of Displacement Measurement System using Ultrasonic Sensor)

  • 김정섭;김상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.142-145
    • /
    • 1995
  • This paper is to develop a measurement system of the displacement distance using ultrasonic sensors. Two 400KHz ultrasonic sensors are used for realizing the measurement system, such as one sensor transmits the sine wave and the other sensor receives this wave. The displacement is measured by the phase difference between transmitting and receiving signals. A phase defecter transforms phase difference to voltage. Because the output voltage pattern has nonlinear characteristics, the relations of the voltage and the distance are learned by a neural network. As the results of teaming, the efficiency of measurement system is improved. This system can measure the displacement distance at the accuracy of 1 micrometer level.

  • PDF

GENERALIZED THERMOELASTICITY WITH TEMPERATURE DEPENDENT MODULUS OF ELASTICITY UNDER THREE THEORIES

  • Ezzat, M.;Zakaria, M.;Abdel-Bary, A.
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.193-212
    • /
    • 2004
  • A new model of generalized thermoelasticity equations for isotropic media with temperature-dependent mechanical properties is established. The modulus of elasticity is taken as a linear function of reference temperature. The present model is described both generalizations, Lord Shulman (L-S) theory with one relaxation time and Green-Lindsay (G-L) with two relaxation times, as well as the coupled theory, instantaneously. The method of the matrix exponential, which constitutes the basis of the state space approach of modern control theory, applied to two-dimensional equations. Laplace and Fourier integral transforms are used. The resulting formulation is applied to a problem of a thick plate subject to heating on parts of the upper and lower surfaces of the plate that varies exponentially with time. Numerical results are given and illustrated graphically for the problem considered. A comparison was made with the results obtained in case of temperature-independent modulus of elasticity in each theory.

Crack Problem at Interface of Piezoelectric Strip Bonded to Elastic Layer Under Anti-Plane Shear

  • Lee, Kang-Yong;Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.61-65
    • /
    • 2001
  • Using the theory of linear piezoelectricity, the problem of two layered strip with a piezoelectric ceramic bonded to an elastic material containing a finite interface crack is considered. The out-of-plane mechanical and in-plane electrical loadings are simultaneously applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The stress intensity factor is determined, and numerical analyses for several materials are performed and discussed.

  • PDF

Eccentric Crack in a Piezoelectric Strip Under Electro-Mechanical Loading

  • Lee, Kang-Yong;Shin, Jeong-Woo;Kwon, Soon-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.21-25
    • /
    • 2001
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained, and the influences of the electric fields for piezoelectric ceramics are discussed.

  • PDF

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.