• 제목/요약/키워드: linear slip

검색결과 211건 처리시간 0.03초

스위치모드 컨버터에 의한 새로운 슬립전력 회수시스템 (A New Slip Power Recovery System by Switch Mode Converter)

  • 박한웅;박성준;김철우;황영문
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.73-81
    • /
    • 1999
  • 본 연구에서는 권선형 유도전동기의 회전자회로에 스위치모드 컨버터를 적용시킨 새로운 슬립전력 회수시스템을 제안하고 이를 분석한다. 제안된 시스템의 해석을 통해 적용된 컨버터의 듀티비에 의해 속도가 제어될 수 있으며, 동시에 기존 시스템의 몇가지 특성을 개선할 수 있음을 보인다. 특히 종래 시스템에서 주된 단점으로 되어 있는 저역률 및 전원전류의 고조파성분을 크게 개선할 수 있을 뿐만 아니라 선형적인 속도조절도 가능하다. 제안된 시스템의 타당성을 보이기 위해 이론 및 실험 결과를 제시하고 이를 설명한다.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

SIDM(Smooth Impact Drive Mechanism)을 이용한 초정밀 회전기구에 대한 연구 (A Study on the Ultra Precision Rotational Device using Smooth Impact Drive Mechanism)

  • 이상욱;전종업;박규열;부경석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2006
  • This paper represents a ultra precision rotational device where the smooth impact drive mechanism(SIDM) is utilized as a driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction bars which are attached to the piezoelectric elements. This device was designed to drive a rotational disk using slip-slip motion mechanism based on stick-slip motion mechanism. Experimental results show that the angular velocity was increased in proportion to the magnitude of supplied voltage to piezoelectric element. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V. The amount of step movement has been revealed to be $3.44{\times}10^{-4}$ radian.

  • PDF

최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가 (Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces)

  • 유승룡;김대훈
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안 (Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil)

  • 정현식;이영생
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.5-19
    • /
    • 2018
  • 지반앵커의 정착장에 작용하는 정착응력 분포 특성은 매우 비선형적이며 공학적인 메카니즘이 비교적 복잡하기 때문에 다양한 지반조건 및 비선형적 주면전단거동을 구체적으로 모사하여 지반앵커를 설계하는데 어려움이 크다. 이런 한계로 인하여 현재 대부분의 관련 설계 기준서에는 편의상 정착장 전장에 걸쳐 일정한 주면전단응력분포를 가정하여 설계에 적용하고 있다. 따라서 본 연구에서는 인장형 앵커의 인발거동 특성을 분석하기 위하여 풍화토 지반조건을 대상으로 현장인발시험을 수행하였으며 이를 토대로 앵커 정착장의 주면전단거동을 정립하고, 정착장 거동특성을 비교적 간편하게 예측하기 위한 다중선형모델 및 이를 적용한 해석적 기법을 제안하였다. 현장시험결과와 해석적 결과가 상호 유사하게 나타남에 따라 본 연구에서 제시된 다중선형모델 및 이를 이용한 해석적 기법의 적용성 및 유효성을 확인할 수 있었다. 정착장 주면전단거동의 경우 최대인발하중 보다 작은 하중조건에서는 정착장 시작점에서 최대전단응력이 분포하게 되나 최대인발하중이 발생한 이후부터는 정착장 시작점에서 전단응력이 가장 작게 분포하고, 정착장 시작점으로부터 일정거리 이격된 지점에서 최대전단응력이 발생함을 확인하였다.

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발 (A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model)

  • 남용윤;김사수;이상갑
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.181-188
    • /
    • 1994
  • Generally, the structural material shows rate dependent behaviors, which require to constitute different strain-stress relations according to strain rates. Conventional rate- independent constitutive equations used in general purpose finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate dependent constitutive equation for elastic-plastic material was developed. The plastic stretch rate was modeled based on slip model with dislocation velocity and density so that there is no yielding condition, and no loading conditions. Non-linear hardening rule was also introduced for finite strain. Material constants of present constitutive equation were determined by experimental data of mild steel. The constitutive equation was applied to uniaxile tension. It was appeared that the present constitutive equation well simulates rate dependent behaviors of mild steel.

  • PDF

신경회로망을 이용한 이동로보트의 위치 추정에 관한 연구

  • 김재희;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.214-219
    • /
    • 2001
  • For navigation of a mobile robot, it is one of the essential tasks of find out its current position. Dead reckoning is the most frequently used method to estimate its position. However conventional dead reckoner is prone to give us false information on the robot position especially when the wheels are slipping. This paper proposes an improved dead reckoning scheme using neural networks. The network detects the instance of wheel slipping and estimates the linear velocity of the wheel ; thus it calculates current position and heading angel of a mobile robot. The structure and variables of the neural network are chosen based on the analysis of slip motion robot. The structure and variables of the neural network are chosen based on the analysis of slip motion characteristics. A series of experiments are performed to investigate the performance of the improved dead reckoning system.

피에조일렉트릭 액츄에이터의 히스테리시스 보상 제어 (Hysteresis Compensation Control of Piezoelectric Actuators)

  • 임요안;최기흥;최기상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 1996
  • Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. In this study a digital tracking control approach for a piezoelectric actuator based on incorporating a feedback linearization loop with a PID feedback controller is presented. The hysteresis nonlinearity of the piezoelectric actuator is modeled in the feedback compensation loop using the Maxwell slip model. Experiments were performed on a piezoelectric 2-axis linear positioner for tracking linearly decaying sinusoidal waveforms and circles. The experimental results show that the tracking control performance is noticeably improved by augmenting the feedback loop with a model of hysteresis in the feedback compensation loop.

  • PDF