• Title/Summary/Keyword: linear probability models

Search Result 94, Processing Time 0.025 seconds

Development of Vehicular Load Model using Heavy Truck Weight Distribution (II) - Multiple Truck Effects and Model Development (중차량중량분포를 이용한 차량하중모형 개발(II) - 연행차량 효과 분석 및 모형 개발)

  • Hwang, Eui-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.199-207
    • /
    • 2009
  • In this paper, new vehicular load model is developed for reliability-based bridge design code. Rational load model and statistical properties of loads are important for developing reliability-based design code. In the previous paper, truck weight data collected at eight locations using WIM or BWIM system are analyzed to calculate the maximum truck weights for specified bridge lifetime. Probability distributions of upper 20% total truck weight are assumed as Extreme Type I (Gumbel Distribution) and 100 years maximum weights are estimated by linear regression. In this study, effects of multiple presence of trucks are analyzed. Probability of multiple presence of trucks are estimated and corresponding multiple truck weights are calculated using the same probability distribution function as in the previous paper. New vehicular live load model are proposed for span length from 10 m to 200 m. New model is compared with current Korean model and various load models of other countries.

An empirical bracketed duration relation for stable continental regions of North America

  • Lee, Jongwon;Green, Russell A.
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • An empirical predictive relationship correlating bracketed duration to earthquake magnitude, site-to-source distance, and local site conditions (i.e. rock vs. stiff soil) for stable continental regions of North America is presented herein. The correlation was developed from data from 620 horizontal motions for central and eastern North America (CENA), consisting of 28 recorded motions and 592 scaled motions. The bracketed duration data was comprised of nonzero and zero durations. The non-linear mixed-effects regression technique was used to fit a predictive model to the nonzero duration data. To account for the zero duration data, logistic regression was conducted to model the probability of zero duration occurrences. Then, the probability models were applied as weighting functions to the NLME regression results. Comparing the bracketed durations for CENA motions with those from active shallow crustal regions (e.g. western North America: WNA), the motions in CENA have longer bracketed durations than those in the WNA. Especially for larger magnitudes at far distances, the bracketed durations in CENA tend to be significantly longer than those in WNA.

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Road Aware Information Sharing in VANETs

  • Song, Wang-Cheol;Rehman, Shafqat Ur;Awan, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3377-3395
    • /
    • 2015
  • Recently, several approaches to share road conditions and/or digital contents through VANETs have been proposed, and such approaches have generally considered the radial distance from the information source as well as the TTL to provision an ephemeral, geographically-limited information sharing service. However, they implement general MANETs and have not been tailored to the constrained movement of vehicles on roads that are mostly linear. In this paper, we propose a novel application-level mechanism that can be used to share road conditions, including accidents, detours and congestion, through a VANET. We assign probabilities to roads around each of the intersections in the neighborhood road network. We then use the graph representation of the road network to build a spanning tree of roads with the information source as the root node. Nodes below the root represent junctions, and the edges represent inter-connecting road segments. Messages propagate along the branches of the tree, and as the information propagates down the branches, the probability of replication decreases. The information is replicated until a threshold probability has been reached, and our method also ensures that messages are not delivered to irrelevant vehicles, independently of their proximity to the source. We evaluated the success rate and performance of this approach using NS-3 simulations, and we used IDM car following and MOBIL lane change models to provide realistic modeling of the vehicle mobility.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Voice Activity Detection in Noisy Environment based on Statistical Nonlinear Dimension Reduction Techniques (통계적 비선형 차원축소기법에 기반한 잡음 환경에서의 음성구간검출)

  • Han Hag-Yong;Lee Kwang-Seok;Go Si-Yong;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.986-994
    • /
    • 2005
  • This Paper proposes the likelihood-based nonlinear dimension reduction method of the speech feature parameters in order to construct the voice activity detecter adaptable in noisy environment. The proposed method uses the nonlinear values of the Gaussian probability density function with the new parameters for the speec/nonspeech class. We adapted Likelihood Ratio Test to find speech part and compared its performance with that of Linear Discriminant Analysis technique. In experiments we found that the proposed method has the similar results to that of Gaussian Mixture Models.