• 제목/요약/키워드: linear predictive

검색결과 508건 처리시간 0.029초

Prediction of Postoperative Lung Function in Lung Cancer Patients Using Machine Learning Models

  • Oh Beom Kwon;Solji Han;Hwa Young Lee;Hye Seon Kang;Sung Kyoung Kim;Ju Sang Kim;Chan Kwon Park;Sang Haak Lee;Seung Joon Kim;Jin Woo Kim;Chang Dong Yeo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권3호
    • /
    • pp.203-215
    • /
    • 2023
  • Background: Surgical resection is the standard treatment for early-stage lung cancer. Since postoperative lung function is related to mortality, predicted postoperative lung function is used to determine the treatment modality. The aim of this study was to evaluate the predictive performance of linear regression and machine learning models. Methods: We extracted data from the Clinical Data Warehouse and developed three sets: set I, the linear regression model; set II, machine learning models omitting the missing data: and set III, machine learning models imputing the missing data. Six machine learning models, the least absolute shrinkage and selection operator (LASSO), Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM) were implemented. The forced expiratory volume in 1 second measured 6 months after surgery was defined as the outcome. Five-fold cross-validation was performed for hyperparameter tuning of the machine learning models. The dataset was split into training and test datasets at a 70:30 ratio. Implementation was done after dataset splitting in set III. Predictive performance was evaluated by R2 and mean squared error (MSE) in the three sets. Results: A total of 1,487 patients were included in sets I and III and 896 patients were included in set II. In set I, the R2 value was 0.27 and in set II, LightGBM was the best model with the highest R2 value of 0.5 and the lowest MSE of 154.95. In set III, LightGBM was the best model with the highest R2 value of 0.56 and the lowest MSE of 174.07. Conclusion: The LightGBM model showed the best performance in predicting postoperative lung function.

Characterization and predictive value of volume changes of extremity and pelvis soft tissue sarcomas during radiation therapy prior to definitive wide excision

  • Gui, Chengcheng;Morris, Carol D.;Meyer, Christian F.;Levin, Adam S.;Frassica, Deborah A.;Deville, Curtiland;Terezakis, Stephanie A.
    • Radiation Oncology Journal
    • /
    • 제37권2호
    • /
    • pp.117-126
    • /
    • 2019
  • Purpose: The purpose of this study was to characterize and evaluate the clinical significance of volume changes of soft tissue sarcomas during radiation therapy (RT), prior to definitive surgical resection. Materials and Methods: Patients with extremity or pelvis soft tissue sarcomas treated at our institution from 2013 to 2016 with RT prior to resection were identified retrospectively. Tumor volumes were measured using cone-beam computed tomography obtained daily during RT. Linear regression evaluated the linearity of volume changes. Kruskal-Wallis tests, Mann-Whitney U tests, and linear regression evaluated predictors of volume change. Logistic and Cox regression evaluated volume change as a predictor of resection margin status, histologic treatment response, and tumor recurrence. Results: Thirty-three patients were evaluated. Twenty-nine tumors were high grade. Prior to RT, median tumor volume was 189 mL (range, 7.2 to 4,885 mL). Sixteen tumors demonstrated significant linear volume changes during RT. Of these, 5 tumors increased and 11 decreased in volume. Myxoid liposarcoma (n = 5, 15%) predicted decreasing tumor volume (p = 0.0002). Sequential chemoradiation (n = 4, 12%) predicted increasing tumor volume (p = 0.008) and corresponded to longer times from diagnosis to RT (p = 0.01). Resection margins were positive in three cases. Five patients experienced local recurrence, and 7 experienced distant recurrence, at median 8.9 and 6.9 months post-resection, respectively. Volume changes did not predict resection margin status, local recurrence, or distant recurrence. Conclusion: Volume changes of pelvis and extremity soft tissue sarcomas followed linear trends during RT. Volume changes reflected histologic subtype and treatment characteristics but did not predict margin status or recurrence after resection.

머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교 (Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information)

  • 홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

에너지절감을 위한 물 재이용 펌프시스템의 최적운전 제어 (Optimal Operation Control for Energy Saving in Water Reuse Pumping System)

  • 부창진;김호찬
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2414-2419
    • /
    • 2012
  • 본 논문에서는 물 재이용 펌프 시스템의 에너지 효율적 운전 방법을 제안한다. 1시간 단위의 시간대에서 최적운전제어를 위해 예측구간 스위칭방법과 선형계획법을 적용하고 에너지 비용은 경부하, 중부하, 그리고 최대부하를 포함한 TOU 요금과 피크요금을 통해 산정하도록 한다. 물 재이용 펌프시스템에서의 최적운전은 TOU 요금과 피크요금을 포함한 에너지 비용을 최대로 줄일 수 있도록 수행한다. 시뮬레이션을 통해 제안한 최적운전방법을 적용하면 많은 전력 에너지 비용의 절감과 전력계통의 안정성 향상을 확인할 수 있다.

디지털 이동통신을 위한 음성 부호기의 성능 분석 (A Performance Analysis of the Speech Coders for Digital Mobile Radio)

  • 정영모;이상욱
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.491-501
    • /
    • 1990
  • Recently, four speech coding techniques, namely, SBC-APCM(sub-band coding adaptive PCM), RPE-LPC(regualr pulse excitation linear predictive codec), MPE-LTP(multi-pulse excited long-term prediction) and CELP (code-excited linear prediction) are proposed for digital mobile radio applications. However, a performance comparison of these coders in the Rayleigh fading environment has not been made yet. In this paper, the performances of the four spech coders in the random bit error and burst error environment are investigated. For the channel coding of SBC-APCM, RPE-LPC and MPE-LTP, the sensitivity of output bit stream is measured and a bit selective forward error correction is provided acording to the measured bit sensitivity. And for an attempt to improve the performance of CELP, an optimum quantizer is applied for transmitting scalar quantities in CELP. However, an improvement over the conventional approach is found to be negligible. For the channel coding of CELP, Reed-Solomon code, Golay code, convolutional code of rate 1/2 shows the best performance. Finally, from the simulation results, it is concluded that CELP is the best candidate for digital mobile radio and is followed by MPE-LTP, SBC-APCM and RPE-LPC.

  • PDF

Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network

  • Habibi-Yangjeh, Aziz;Pourbasheer, Eslam;Danandeh-Jenagharad, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.833-841
    • /
    • 2008
  • Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and $12.77{^{\circ}C}$, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = $40.7{^{\circ}C}$). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

입사각 추정을 위한 적응 공간영역 FB-예측기 (Adaptive Spatial Domain FB-Predictors for Bearing Estimation)

  • 이원철;박상택;차일환;윤대희
    • 대한전자공학회논문지
    • /
    • 제26권3호
    • /
    • pp.160-166
    • /
    • 1989
  • 공간영역 예측기의 계수를 계산하기 위한 적응 알고리듬이 제안되었다. 제안된 방법은 LMS 알고리듬을 사용하여 TDL(tapped-delay-line)과 ESC(escalator) 구조를 갖는 공간영역 예측기의 계수를 계산한다. 기종존의 일반적인 예측기와 다른점은 순방향과 역방향 예측 오차의 평균 자승값의 합을 최소화하며 예측기의 계수를 계산함으로 향상된 선형예측 공간 스펙트럼을 얻을 수 있다. 제안된 방법을 선형으로 배열된 센서에 의하여 얻어진 협대역신호의 입사각 추정문제에 적용시켜 기존의 적응예측 알고리듬과 컴퓨터 시뮬레이션을 통하여 성능을 비교하였다.

  • PDF

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Multilevel modeling of diametral creep in pressure tubes of Korean CANDU units

  • Lee, Gyeong-Geun;Ahn, Dong-Hyun;Jin, Hyung-Ha;Song, Myung-Ho;Jung, Jong Yeob
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4042-4051
    • /
    • 2021
  • In this work, we applied a multilevel modeling technique to estimate the diametral creep in the pressure tubes of Korean Canada Deuterium Uranium (CANDU) units. Data accumulated from in-service inspections were used to develop the model. To confirm the strength of the multilevel models, a 2-level multilevel model considering the relationship between channels for a CANDU unit was compared with existing linear models. The multilevel model exhibited a very robust prediction accuracy compared to the linear models with different data pooling methods. A 3-level multilevel model, which considered individual bundles, channels, and units, was also implemented. The influence of the channel installation direction was incorporated into the three-stage multilevel model. For channels that were previously measured, the developed 3-level multilevel model exhibited a very good predictive power, and the prediction interval was very narrow. However, for channels that had never been measured before, the prediction interval widened considerably. This model can be sufficiently improved by the accumulation of more data and can be applied to other CANDU units.