Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.9.1472

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures  

Habibi-Yangjeh, Aziz (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili)
Publication Information
Abstract
Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.
Keywords
Quantitative-structure property relationship; Normalized polarity parameter; Artificial neural networks; Theoretical descriptors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Lowrey, A. H.; Famini, G. R.; Wilson, L. Y. J. Chem. Soc., Perkin Trans. 2 1997, 1381
2 Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J. Chem. Soc., Perkin Trans. 2 1998, 1293
3 Gini, G.; Cracium, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2004, 44, 1897   DOI   ScienceOn
4 Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J. Fluorine Chem. 2002, 16, 163
5 Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; VCH: 2003; Chap. 4-7
6 Marcus, Y. J. Chem. Soc., Perkin Trans. 2 1994, 1015
7 Cativiela, C.; Garcia, J. I.; Gil, J.; Martinez, R. M.; Mayoral, J. A.; Salvatella, L.; Urieta, J. S.; Mainer, A. M.; Abraham, M. H. J. Chem. Soc., Perkin Trans. 2 1997, 653
8 Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2000, 32, 431
9 Gholami, M. R.; Habibi-Yangjeh, A. J. Phys. Org. Chem. 2000, 13, 468
10 Gholami, M. R.; Habibi-Yangjeh, A. Int. J. Chem. Kinet. 2001, 33, 118. 7. Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884
11 Habibi-Yangjeh, A.; Gholami, M. R.; Mostaghim, R. J. Phys. Org. Chem. 2001, 14, 884
12 Harifi, A.-R.; Habibi-Yangjeh, A.; Gholami, M. R. J. Phys. Chem. B 2006, 110, 7073
13 Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000
14 Famini, G. R.; Wilson, L. Y. J. Phys. Org. Chem. 1999, 12, 645   DOI   ScienceOn
15 Famini, G. R.; Penski, C. E.; Wilson, L. Y. J. Phys. Org. Chem. 1992, 5, 395
16 Famini, G. R. Chemosphere 1997, 35, 2417   DOI   ScienceOn
17 Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J. Phys. Org. Chem. 1998, 11, 261   DOI   ScienceOn
18 Famini, G. R.; Benyamin, D.; Kim, C.; Veerawat, R.; Wilson, L. Y. Collect. Czech. Chem. Commun. 1999, 64, 1727   DOI   ScienceOn
19 Habibi-Yangjeh, A. Indian J. Chem. B 2003, 42, 1478
20 Habibi-Yangjeh, A. Indian J. Chem. B 2004, 43, 1504
21 Patterson, D. W. Artificial Neural Networks: Theory and Applications; Simon and Schuster: New York, 1996; Part III, Chap. 6
22 Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw-Hill: New York, 1996
23 Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinhein, 1999
24 Agatonovic-Kustrin, S.; Beresford, R. J. Pharm. Biomed. Anal. 2000, 22, 717
25 Xing, W. L.; He, X. W. Anal. Chim. Acta 1997, 349, 283   DOI   ScienceOn
26 Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999, 158, 367   DOI   ScienceOn
27 Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem. Phys. 1999, 1, 4075   DOI   ScienceOn
28 Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974   DOI   ScienceOn
29 Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem. Inf. Comput. Sci. 1999, 39, 1094   DOI   ScienceOn
30 Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int. J. Pharm. 2000, 196, 37
31 Koziol, J. Internet Electron. J. Mol. Des. 2002, 1, 80
32 Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077   DOI   ScienceOn
33 Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509, 179   DOI   ScienceOn
34 Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176   DOI   ScienceOn
35 Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 6, 139
36 Habibi-Yangjeh, A.; Nooshyar, M. Physics and Chemistry of Liquids 2005, 43, 239   DOI   ScienceOn
37 Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 2007   DOI   ScienceOn
38 Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. J. Mol. Model 2006, 12, 338
39 Marcus, Y. The Properties of Solvents; John Wiley and Sons: New York, 1999
40 Turner, J. V.; Maddalena, D. J.; Cutler, D. J. Int. J. Pharm. 2004, 270, 209   DOI   ScienceOn
41 Matlab 6.5; Mathworks: 1984-2002
42 Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks: Natick, MA, 2000
43 Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176   DOI   ScienceOn