• Title/Summary/Keyword: linear predictive

Search Result 508, Processing Time 0.028 seconds

A Digital Audio Respose System Based on the RELP Algorithm (RELP 방식을 이용한 디지털 음성 응답기)

  • 김상용;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.6
    • /
    • pp.7-16
    • /
    • 1984
  • This paper describes the overall procedure of the development of a digital audio response system. It has been developed specifically as an answering system to the inquiries of telephone numbers from subscribers. The system has been realized based on the residual excited linear prediction (RELP) algorithm that incorporates a pitch predictive loop. Its major advantage over other similar systems is that it produces high quality of synthetic speech, although its memory size is relatively small. The hardware which consists of a speech synthesizer, a controller and an I/O part has been constructed using 2900 series bit-slice microprocessors and an INTEL 8085 microprocessor. The system is capable of real time processing, reliable, and adaptable to other applications.

  • PDF

Polymer Quality Control Using Subspace-based Model Predictive Control with BLUE Filter

  • Song, In-Hyoup;Yoo, Kee-Youn;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.357-357
    • /
    • 2000
  • In this study, we consider a multi-input multi-output styrene polymerization reactor system for which the monomer conversion and the weight average molecular weight are controlled by manipulating the jacket inlet temperature and the feed flow rate. The reactor system is identified by using a linear subspace identification method and then the output feedback model predictive controller is constructed on the basis of the identified model. Here we use the Best Linear Unbiased Estimation (BLUE) filter as a stochastic estimator instead of the Kalman filter. The BLUE filter observes the state successfully without any a priori information of initial states. In contrast to the Kalman filter, the BLUE filter eliminates the offset by observing the state of the augmented system regardless of a priori information of the initial state for an integral white noise augmented system. A BLUE filter has a finite impulse response (FIR) structure which utilizes finite measurements and inputs on the most recent time interval [i-N, i] in order to avoid long processing times.

  • PDF

A DFT and QSAR Study of Several Sulfonamide Derivatives in Gas and Solvent

  • Abadi, Robabeh Sayyadi kord;Alizadehdakhel, Asghar;Paskiabei, Soghra Tajadodi
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.225-234
    • /
    • 2016
  • The activity of 34 sulfonamide derivatives has been estimated by means of multiple linear regression (MLR), artificial neural network (ANN), simulated annealing (SA) and genetic algorithm (GA) techniques. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear -log (IC50) prediction. The results obtained using GA-ANN were compared with MLR-MLR, MLR-ANN, SA-ANN and GA-ANN approaches. A high predictive ability was observed for the MLR-MLR, MLR-ANN, SA-ANN and MLR-GA models, with root mean sum square errors (RMSE) of 0.3958, 0.1006, 0.0359, 0.0326 and 0.0282 in gas phase and 0.2871, 0.0475, 0.0268, 0.0376 and 0.0097 in solvent, respectively (N=34). The results obtained using the GA-ANN method indicated that the activity of derivatives of sulfonamides depends on different parameters including DP03, BID, AAC, RDF035v, JGI9, TIE, R7e+, BELM6 descriptors in gas phase and Mor 32u, ESpm03d, RDF070v, ATS8m, MATS2e and R4p, L1u and R3m in solvent. In conclusion, the comparison of the quality of the ANN with different MLR models showed that ANN has a better predictive ability.

GMM-Based Gender Identification Employing Group Delay (Group Delay를 이용한 GMM기반의 성별 인식 알고리즘)

  • Lee, Kye-Hwan;Lim, Woo-Hyung;Kim, Nam-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • We propose an effective voice-based gender identification using group delay(GD) Generally, features for speech recognition are composed of magnitude information rather than phase information. In our approach, we address a difference between male and female for GD which is a derivative of the Fourier transform phase. Also, we propose a novel way to incorporate the features fusion scheme based on a combination of GD and magnitude information such as mel-frequency cepstral coefficients(MFCC), linear predictive coding (LPC) coefficients, reflection coefficients and formant. The experimental results indicate that GD is effective in discriminating gender and the performance is significantly improved when the proposed feature fusion technique is applied.

Noise-Predictive Decision-Feedback Equalizer for Wireless Mobile Communications (무선 이동 통신을 위한 잡음 예측 결정 궤환 등화기)

  • Hong, Dae-Ki;Kim, Sun-Hee;Kim, Young-Sung;Cho, Jin-Woong;Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2008
  • Adaptive equalizers are inevitable schemes in digital communication systems for compensating the transmission channel distortion. Additionally, to obtain the required BER(Bit Error Rate), the adaptive algorithms appropriate to the mobile communication channels are required. In this paper, we propose the NPDFE (Noise-Predictive Decision Feedback Equalizer) for communication systems performance improvement in mobile communication channels. The performance of the proposed NPDFE with QPSK (Quadrature Phase Shift Keying) is simulated under AWGN (Additive White Gaussian Noise), Ricean fading, ETSI (European Telecommunications Standards Institute) fading, and Rayleigh fading channels. The equalizers used in simulations are a LE (Linear Equalizer), a DFE (Decision Feedback Equalizer), and a NPDFE. Moreover, the equalizer performance criterion of the QPSK is the BER.

Modeling of Flow-Accelerated Corrosion using Machine Learning: Comparison between Random Forest and Non-linear Regression (기계학습을 이용한 유동가속부식 모델링: 랜덤 포레스트와 비선형 회귀분석과의 비교)

  • Lee, Gyeong-Geun;Lee, Eun Hee;Kim, Sung-Woo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.61-71
    • /
    • 2019
  • Flow-Accelerated Corrosion (FAC) is a phenomenon in which a protective coating on a metal surface is dissolved by a flow of fluid in a metal pipe, leading to continuous wall-thinning. Recently, many countries have developed computer codes to manage FAC in power plants, and the FAC prediction model in these computer codes plays an important role in predictive performance. Herein, the FAC prediction model was developed by applying a machine learning method and the conventional nonlinear regression method. The random forest, a widely used machine learning technique in predictive modeling led to easy calculation of FAC tendency for five input variables: flow rate, temperature, pH, Cr content, and dissolved oxygen concentration. However, the model showed significant errors in some input conditions, and it was difficult to obtain proper regression results without using additional data points. In contrast, nonlinear regression analysis predicted robust estimation even with relatively insufficient data by assuming an empirical equation and the model showed better predictive power when the interaction between DO and pH was considered. The comparative analysis of this study is believed to provide important insights for developing a more sophisticated FAC prediction model.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

An Output Feedback Predictive Control for Stabilizing a System With Multiple Delayed Inputs (지연된 다중 입력을 갖는 시스템을 안정화하는 출력 궤환 예측 제어)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.424-429
    • /
    • 2019
  • The evolution of networking technology such as commercialization of 5G systems provides foundation for information exchange and control of systems over the network. In addition, importance of controlling a system with delay is increasing significantly, since various phenomena in the network are associated with delay. In this paper, with a predictive control which has been studied for designing a controller with low complexity, we propose a novel predictive control for a system with multi-inputs such that it can keeps the complexity almost the same regardless of the number of inputs and degree of delay. The asymptotic stability of the proposed control with a static output feedback is also proved. The numerical simulation shows that the proposed method is superior in complexity and the performance of finding feasible controllers to the existing predictive control and a conventional method based on augmented states.

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method (다중선형회귀법을 활용한 예민화와 환경변수에 따른 AL-6XN강의 공식특성 예측)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.302-309
    • /
    • 2020
  • This study aimed to predict the pitting corrosion characteristics of AL-6XN super-austenitic steel using multiple linear regression. The variables used in the model are degree of sensitization, temperature, and pH. Experiments were designed and cyclic polarization curve tests were conducted accordingly. The data obtained from the cyclic polarization curve tests were used as training data for the multiple linear regression model. The significance of each factor in the response (critical pitting potential, repassivation potential) was analyzed. The multiple linear regression model was validated using experimental conditions that were not included in the training data. As a result, the degree of sensitization showed a greater effect than the other variables. Multiple linear regression showed poor performance for prediction of repassivation potential. On the other hand, the model showed a considerable degree of predictive performance for critical pitting potential. The coefficient of determination (R2) was 0.7745. The possibility for pitting potential prediction was confirmed using multiple linear regression.