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ABSTRACT. The activity of 34 sulfonamide derivatives has been estimated by means of multiple linear regression (MLR), 
artificial neural network (ANN), simulated annealing (SA) and genetic algorithm (GA) techniques. These models were also 
utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear -log (IC50) prediction. 
The results obtained using GA-ANN were compared with MLR-MLR, MLR-ANN, SA-ANN and GA-ANN approaches. A 
high predictive ability was observed for the MLR-MLR, MLR-ANN, SA-ANN and MLR-GA models, with root mean sum square 
errors (RMSE) of 0.3958, 0.1006, 0.0359, 0.0326 and 0.0282 in gas phase and 0.2871, 0.0475, 0.0268, 0.0376 and 0.0097 in 
solvent, respectively (N=34). The results obtained using the GA-ANN method indicated that the activity of derivatives of sul­
fonamides depends on different parameters including DP03, BID, AAC, RDF035v, JGI9, TIE, R7e+, BELM6 descriptors in 
gas phase and Mor 32u, ESpm03d, RDF070v, ATS8m, MATS2e and R4p, L1u and R3m in solvent. In conclusion, the compar­
ison of the quality of the ANN with different MLR models showed that ANN has a better predictive ability.
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INTRODUCTION

The sulfonamide group is considered as a pharmaco­
poeia which is present in a number of biologically active 
molecules, particularly in antimicrobial agents.1-5 It is also 
present in inhibitors of carbonic anhydrase,6-10 anticancer11 
and anti-inflammatory agents,12 which are derivatives of 
sulfonamides.

Most diseases that involve G-protein receptors in the 
central nervous system cause abnormal behavior, due to drug 
addiction to sulfonamides. Recent studies have shown that in 
regulating other receptors that interact with drug and other 
substance abuse, the opioid receptors play an important 
role.13-16

One of the most important aspects in chemometrics that 
provide important information useful for molecular design 
and medicinal chemistry is the Quantitative structure activity 
relationship (QSAR).17-19 QSAR models are mathematical 
equations that create a relationship between chemical 
structures and biological activities. The first step in the 
QSAR study is to find a set of descriptors with higher impact 
on biological activity.20-23 In QSAR models, a wide range 
of descriptors are used, which can be constitutional, geo­
metrical etc.

Several QSAR studies26,27 have been carried out involving 
the use of an effective computational method to examine 
the inhibition mechanism.

In the present study, the multiple linear regressions (MLR) 
as linear models, and artificial neural networks (ANN), 
simulated annealing (SA) and genetic algorithm (GA)21-25 
as non-linear models were applied to investigate the QSAR in 
sulfonamide derivatives. Various QSAR models have been 
used to select the best descriptors for the important pre­
diction of inhibitory activity of sulfonamide compounds, 
and then these models were compared.

THEORY AND COMPUTATIONAL METHODS

General methods
The geometric optimizations of sulfonamide compounds 

were carried out using Gaussian 03W at B3lyp/6-31g.28 Polar­
ized continuum model (PCM) was applied to consider the 
non-specific solvent effect, and all molecules were opti­
mized in H2O solvent.

3226 molecular descriptors in topological, geometrical, 
MoRSE,30,31 RDF,31，32 GETAWAY,33,23 auto-correlations34 
and WHIM 35, 36 groups were calculated using the Dragon 
program.29 In three steps, the number of descriptors was 
reduced through an objective feature selection.

At first, in the dataset of sulfonamide compounds, the 
descriptors that had the same value of at least 70% were 
removed. and thereafter, the descriptors with correlation 
coefficient less than 0.25 with the dependent variable (-log 
IC50) were considered redundant and removed.37 After
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Figure 1. The employed procedure for finding optimum descrip­
tors of the ANN models.

these two steps, the number of descriptors was reduced to 
1047 in the gas phase and 1110 in the solvent phase. Step­
wise multiple linear regression procedure was used for 
rejection of descriptors. The QSAR method with high cor­
relation coefficient (R), low standard deviation, least numbers 
of independent variables, high ability to predict and high F 
statistic value is an ideal method.38

The best subset of descriptors selected in (MLR) was 
fed into neural networks in the MLR-ANN method. The 
neural networks used in this study were all three-layer feed­
forward network. The networks were trained using the 
TSET members with Levenberg-Marquart algorithm.39 In 
SA-ANN and GA-ANN methods, 1047 and 1110 descrip­
tors in the gas and solvent phase were considered as pos­
sible input of the ANN and fed into the input layer of the 
ANNs in GA-ANN and SA-ANN models (Fig. 1). All 
calculations in the present study were done in Matlab envi­
ronment (V 7.12, The Mathworks,Inc), SA, GA and Neural 
Fitting toolbox.

The mean square error of all the models was calculated 
using the following equation:

rmse=*§고 ⑴

where 乃 is the desired output, yo is the predicted value by 
model, and n is the number of molecules in this study’s 
data set.

RESULTS AND DISCUSSION

Thirty four different sulfonamide derivatives were selected 
as a sample set, and the geometry of the compounds was 
optimized using Gaussian 09W at B3LYP/6-31 g. All the 
optimized Sulfonamide compounds are shown in Fig. 2.

Linear and non-linear feature selection methods, such as 
MLR-MLR (stepwise-MLR), MLR-ANN, SA-ANN, MLR- 
GA and GA-ANN, were used to select the most significant 
descriptor.

SPSS40 software was used for stepwise MLR models as 
shown in Table 10. The RMSE in MLR-MLR for predicted 
activity was found to be 0.39576 in gas phase and 0.2871 
in solvent phase. Also, the correlation coefficient (R2) cal­
culated for the PSET was 0.8226 in gas phase and 0.90671 
in solvent phase.

Table 10 shows that MLR-MLR method is better than 
other linear methods (MLR-PLS1 and MLR-PCR). The 
definition of the descriptors in the MLR-MLR method is 
shown in Table 1.

The descriptors, which were selected using the MLR- 
MLR model were fed into the neural networks to establish 
the MLR-ANN model. In this model, the RMSE for predicted 
activity and TSET compounds were found to be 0.1006, 
0.0475 and 0.1162, 0.0458 in gas and solvent phase, respec­
tively (Table 9).

To establish the SA-ANN, MLR-GA and GA-ANN mod­
els, the 1047 and 1110 descriptors in gas and solvent phase 
were fed into the neural network to select the best descrip­
tors, also 3 neurons in the hidden layer of the GA-ANN 
model were used in this study (Fig. 1).

The descriptors, which were selected using the QSAR 
models are shown in Tables 1-8. These parameters relate 
the structure to the activity of the optimized compounds.

MATS5e and GATS2p (Tables 1 and 2), GATS3e and 
ATS4v (Table 4), ATS8m, and MATS2e (Table 8) are 2D 
autocorrelation descriptors. The 2D-autocorrelation descrip­
tors explain how the values of certain functions, at intervals 
equal to the lag, are correlated.41

EEig0 (Table 1), EEig13d (Tables 2 and 5) and ESPm03d 
(Table 8) are Edge adjacency indices. The Edge adjacency 
relationships in molecular graphs have been used to define
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Figure 2. Optimized structure of the compounds used to build QSAR models with B3lyp/6-31g in gas phase.

a new topographic index.41
RDF 130p, RDF 115v, RDF095v, RDF035v, RDF070v, and 

RDF 115p (Tables 1,2, 5, 7, 8, and 6) are RDF descriptors. The 
radial distribution function (RDF) descriptors are based 
on the distance distribution in the molecule.42

IC5 (Table 2) and IC0 (Table 5), and AAC (Table 7) are 
information indices. The total information content (I) is 
obtained by multiplying the mean information content by 

the number of elements:43
G1s and G1v (Table 1), L1m (Table 3), KM (Table 6), 

L1u (Table 6), and TP (Table 5) are WHIM descriptors. 
WHIM descriptors are built in such a way to capture the 
relevant molecular 3D information regarding molecular size, 
shape, symmetry and atom distribution with respect to 
invariant reference frames.31

R4e+ and R5p+ (Table 1), R7u+ (Table 2) and H6v, RTe,
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Table 1. The best selected descriptors using MLR-MLR method in gas phase

Descriptor Definition Type
MAT S5e Moran autocorrelation 一 Lag 5/weighted by atomic Sanderson electronegativities 2D autocorrelations
GAT S2p Geary autocorrelation 一 Lag 2 / weighted by atomic polarizabilities 2D autocorrelations
EEig03r Eigenvalue 03 from edge adj. matrix weighted by resonance integrals Edge adjacency indices

RDF130p Radial distribution function -13.5 / weighted by atomic polarizabilities RDF descriptors
G1s 1st component symmetry directional WHIM index / weighted by atomic electrotopological states WHIM descriptors
G1v 1st component symmetry directional WHIM index / weighted by atomic van der Waals WHIM descriptors

R4e+ R maximal autocorrelation of lag 4 / weighted by atomic van der Waals volumes GETAWAY descriptors
R5P+ R maximal autocorrelation of lag 5 / weighted by atomic polarizabilities GETAWAY descriptors

Table 2. The best selected descriptors using MLR-MLR method in solvent phase

Descriptor Definition Type
IC5 Information content index (neighborhood symmetry of 5-order) Information indices

GATS2p Geary autocorrelation 一 Lag 2 / weighted by atomic polarizabilities 2D autocorrelations
EEig13d Eigenvalue 13 from edge adj. matrix weighted by dipole moments Edge adjacency indices
RDF115v Radial distribution function -11.5 / weighted by atomic van der Waals RDF descriptors
Mor08u 3D-MoRSE-Signal 08 / weighted 3D-MoRSE descriptors
Mor17v 3D-MoRSE-Signal 17 / weighted by atomic van der Waals volumes 3D-MoRSE descriptors
Mor23e 3D-MoRSE-Signal 23 / weighted by atomic Sanderson electronegativities 3D-MoRSE descriptors
R7u+ R maximal autocorrelation of lag 7 / unweighted GETAWAY descriptors

Table 3. The best selected descriptors using SA-ANN method in gas phase

Descriptor Definition Type
H6v H autocorrelation of lag 6 / unweighted GETAWAY descriptors
GGI6 Topological charge index of order 6 Topological charge indices
RTe R total index / weighted by atomic Sanderson electronegativities GETAWAY descriptors

R6u+ R maximal autocorrelation of lag 6 / unweighted GETAWAY descriptors
MPC05 Molecular path count of order 05 Walk and path counts

L1m 1st component size directional WHIM / weighted by atomic masses WHIM descriptors
F06[C-C] Frequency of X-X at topological distance 06 2D frequency fingerprints
BEHm6 Highest eigenvalue n. 6 of Burden matrix / weighted by atomic masses Burden eigenvalues

Table 4. The best selected descriptors using SA-ANN method in solvent phase

Descriptor Definition Type
H5m H autocorrelation of lag 5 / weighted by atomic masses GETAWAY descriptors

F09[c-이 Frequency of C-O at topological distance 09 2D frequency fingerprints
VED2 Average eigenvector coefficient sum from distance matrix Eigenvalue 一 based indices

GATS3e Geary autocorrelation 一 lag 3 / weighted by atomic Sanderson electronegativities 2D autocorrelations
Mor02v 3D-MoRSE 一 signal 02 / weighted by atomic vander Waals volumes 3D-MoRSE descriptors
BELm Lowest eigenvalue n. 1 of Burden matrix / weighted by atomic masses Burden eigenvalues
Mor17u 3D-MoRSE 一 signal 17 / unweighted 3D-MoRSE descriptors
ATS4V Broto-Moreau autocorrelation of a topological structure- lag 4 / weighted by atomic vander Waals volumes 2D autocorrelations

R6u+ (Table 3), H5m (Table 4), R7e+ (Table 7) and R4p, 
R3m (Table 8) are GETAWAY descriptors. GETAWAY 
(Geometry, Topology, and Atom-Weights Assembly) descrip­
tors encode the geometrical information obtained from the 
molecular matrix, the topological information obtained from 

the molecular graph and the information obtained from 
atomic weights, which are specially designed with the aim 
of matching the 3D-molecular geometry.31

Mor08u, Mor17v, Mor23e (Table 2) and Mor02v, Mor17u 
(Table 4) and Mor 17e (Table 5), and Mor 32u (Table 8)
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Table 5. The best selected descriptors using MLR-GA method in gas phase

Descriptor Definition Type
EEig13d Eigenvalue 13 from edge adj. matrix weighted by dipole moments Edge adjacency indices
Mor17e 3D-MoRSE - signal 17 / unweighted 3D-MoRSE descriptors

TP T total size index / weighted by atomic polarizabilities WHIM descriptors
J Balaban distance connectivity index Topological descriptors

RDF095v Radial distribution function - 9.5 / unweighted by atomic van der Waals volumes RDF descriptors
IC0 Information content (neighborhood symmetry of 0-order) Information indices

Eig1m Leading eigenvalue from mass weighted distance matrix Eigenvalue-based indices
QYYM QQY COMMA2 value / weighted by atomic masses Geometrical descriptors

Table 6. The best selected descriptors using MLR-GA method in solvent phase

Descriptor Definition Type
KM K global shape index / weighted by atomic masses WHIM descriptors
VAR Variation Topological descriptors

MWCO3 Molecular walk count of order 03 Walk and path count
AEige Absolute eigenvalue sum from electro negativity weighted distance matrix Eigenvalue-based indices
SOK Kier symmetry index Topological descriptors
TI2 Second mohar index TI2 Topological descriptors

BEHp6 Highest eigenvalue n. 6 of Burden matrix / weighted by atomic polarizabilities Burden eigenvalues
RDF115p Radial distribution function - 11.5 / weighted by atomic polarizabilities RDF descriptors

Table 7. The best selected descriptors using GA-ANN method in gas phase

Descriptor Definition Type
DP03 Molecular profile no. 03 Randic molecular profiles
BID Balaban ID number Walk and path counts
AAC Mean information index on atomic composition Information indices

RDF035v Radial distribution function - 3.5 / weighted by atomic polarizabilities RDF descriptors
JGI9 Mean topological charge index of order 9 Topological charge indices
TIE E -state topological parameter Topological descriptors

R7e" R maximal autocorrelation of lag 7 / weighted by atomic Sanderson electronegativities GETAWAY descriptors
BELm6 Lowest eigenvalue n. 6 of Burden matrix / weighted by atomic masses Burden eigenvalues

Table 8. The best selected descriptors using GA-ANN method in solvent phase

Descriptor Definition Type
Mor32u 3D-MoRSE - signal 32 / unweighted 3D-MoRSE descriptors

ESpm03d Spectral momen 03 from edge adj. matrix weighted by dipole moments Edge adjacency indices
RDF070v Radial distribution function - 7.0 / weighted by atomic van der Waals volumes RDF descriptors
ATS8m Broto-Moreau autocorrelation of a topological structure-lag 8 / weighted atomic masses 2D autocorrelations

MATS2e Moran autocorrelation- lag 2 / weighted by atomic Sanderson electronegativities 2D autocorrelations
R4p R autocorrelation of lag 4 / weighted by atomic polarizabilities GETAWAY descriptors
L1u 1st component size directional index / unweighted WHIM descriptors
R3m R autocorrelation of lag 3 / weighted atomic masses GETAWAY descriptors

are 3D-MoRSE descriptors. The 3D-MoRSE descriptors 
were obtained through the molecular transformation employed 
in electron diffraction studies.43

GGI6 (Table 3), JGI9 (Table 7) are topology charge indices. 
The Topological Charge Indices were proposed to evaluate 

the charge transfer between pairs of atoms and therefore, 
the global charge transfer in the molecule.31

MPC05 (Table 3), MWC03 (Table 6), BID (Table 7) are 
walk and path count. The molecular walk count of kth order 
(MWCk) is the total number of walks of the kth length in

2016, Vol. 60, No. 4



230 Robabeh Sayyadi kord Abadi, Asghar Alizadehdakhel, and Soghra Tajadodi Paskiabei

Table 9. Statistical parameters of different nonlinear QSAR models

QSAR Model
Predicted Train

R2 RSME R2 RSME
MLR-ANN (Gas) 0.8925 0.1006 0.8894 0.1162

MLR-ANN (Solvent) 0.9472 0.0475 0.9518 0.0458
SA-ANN (Gas phase) 0.9603 0.0359 0.9565 0.0422

SA-ANN (Solvent) 0.9700 0.0268 0.9824 0.0179
MLR-GA (Gas phase) 0.9633 0.0326 0.9471 0.0343

MLR-GA (Solvent) 0.9587 0.0376 0.9628 0.041
GA-ANN (Gas phase) 0.9716 0.0282 0.9591 0.0331

GA-ANN (Solvent) 0.9894 0.0097 0.9877 0.0117

Table 10. Statistical parameters of different linear QSAR models 
in gas and solvent phase

QSAR Model R2 RMSE
MLR-PLS1 (Gas phase) 0.8224 0.3960
MLR-PCR (Gas phase) 0.8023 0.4178
MLR-MLR (Gas phase) 0.8226 0.3958
MLR-PLS1 (Solvent phase) 0.7953 0.4252
MLR-PCR (Solvent phase) 0.7942 0.4263
MLR-MLR (Solvent phase) 0.9067 0.2871

the hydrogen suppressed molecular graph.31
F06[C-C] (Table 6) and F09[C-O] are 2D frequency fin­

gerprints descriptors. Fragment descriptors are represen­
tations of local atomic environments.31

BEHm6 (Table 3), Belem (Table 4), BEHp6 (Table 6), 
and BELm6 are Burden eigenvalue descriptors. The B matrix 
has been defined as the number of atoms, bond order between 
two atoms or the electronegativity of the atoms.31

VED2 (Table 4), Eig1m (Table 5), and Adige (Table 6) 
are eigenvalue based indices descriptors. The Eigenvalue 
Sum Descriptors are computed from Weighted Distance 
Matrices of a Hydrogen-depleted Molecular Graph.

QYYM (Table 5) and DP03 (Table 7) are geometrical and 
Rancid molecular profiles. The Rancid molecular profile 
DPk is derived fom the distance distribution moments of the 
geometric matrix G as the average row sum of its entries raised 
to the kth power and normalized by the factor k!.31

The geometrical variables incorporate information about 
the magnitude of the displacement between the molecular 
centroid (center of mass) and the polarizability-field (cen­
ter of charge).4

SOK, TI2 (Table 6), J (Table 5) and TIE (Table 7) are 
topological descriptors. Topological index mathematically 
encode information regarding the structure of molecules, 
which have been depicted as graphs and are often sensitive to 
size, shape, branching, cyclicity and, to a certain extent, the 
electronic characteristics of molecules.31

Table 11. Observed and predicted values of -logIC50 by using 
GA- ANN in gas phase

Compounds Predicted -Log IC50 Residues
1 0.024777 0.126 0.1012
2 0.314696 0.27 -0.0447
3 0.761097 0.775 0.0139
4 -0.35922 -0.352 0.007
5 -0.52847 -0.38 0.1485
6 0.900297 0.863 -0.0373
7 1.541817 1.542 0.0002
8 0.385464 0.244 -0.1415
9 0.341333 0.365 0.0237
10 0.232471 0.244 0.0125
11 0.137561 0.094 -0.0436
12 2.505598 2.509 0.0035
13 -0.63773 -0.609 0.0287
14 0.270955 0.274 0.0031
15 0.860356 0.796 -0.0643
16 -0.85898 -0.873 -0.014
17 -0.81244 -0.829 -0.0166
18 0.222192 0.114 -0.1082
19 0.488902 0.495 0.006
20 0.693254 0.745 0.0517
21 0.24559 0.226 -0.0196
22 -0.2322 -0.299 -0.0668
23 -0.85898 -0.873 -0.014
24 -0.39159 -0.369 0.0226
25 -0.31709 -0.544 -0.2269
26 -0.06302 -0.086 -0.0229
27 -0.81244 -0.829 -0.0166
28 0.274863 0.345 0.0701
29 0.59767 0.769 0.1713
30 0.434135 0.438 0.004
31 3.517797 3.523 0.005
32 1.425166 1.442 0.0168
33 2.215925 1.329 -0.0887
34 -0.61029 -0.589 0.0213
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Table 12. Observed and predicted values of -logIC50 by using 
GA-ANN in solvate phase

Compounds Predicted -Log IC50 Residues
1 0.14092 0.126 -0.0149
2 0.269564 0.27 0.0004
3 0.770259 0.775 0.005
4 -0.34609 -0.352 -0.006
5 -0.3915 -0.38 0.0115
6 0.871084 0.863 -0.008
7 1.531976 1.542 0.01
8 0.297004 0.244 -0.053
9 0.383159 0.365 -0.0182
10 0.243234 0.244 0.0008
11 0.095581 0.094 -0.002
12 2.60947 2.509 -0.1005
13 -0.6053 -0.609 -0.004
14 0.235868 0.274 0.0381
15 0.235868 0.796 0.5601
16 -0.88056 -0.873 0.007
17 -0.82805 -0.829 -0.0009
18 0.118651 0.114 -0.005
19 0.492411 0.495 0.003
20 0.744692 0.745 0.0003
21 0.203927 0.226 0.0221
22 -0.30701 -0.299 0.008
23 -0.88056 -0.873 0.008
24 -0.36735 -0.369 -0.002
25 -0.54838 -0.544 0.004
26 0.378371 -0.086 -0.4644
27 -0.82805 -0.829 -0.0009
28 0.357496 0.345 -0.0125
29 0.761015 0.769 0.008
30 0.437997 0.438 0.000003
31 3.309107 3.523 0.2139
32 1.668023 1.442 -0.226
33 1.329267 1.329 -0.0003
34 -0.58374 -0.589 -0.005

The statistical parameters of all QSAR models are shown 
in Tables 9 and 10. In train, a computation of 80% sulfOnamid 
compounds is used. In the GA-ANN model, the RMSE 
and R-square were calculated as 0.0282 and 0.9716 in gas 
phase and 0.0097 and 0.9894 in the solvent phase, respec­
tively, therefore, GA-ANN model was better than the other 
models and as such, only the descriptors used in this model 
were evaluated in this study. These descriptors are shown 
in Tables 7 and 8. The observed and predicted values of - 
logIC50 using Matlab program are shown in Tables 11 
and 12. The plot showing the variation of observed versus 
predicted -logIC50 values are shown in Figs. 3 and 4.

Figure 3. Plot between observed vs predicted -log (/IC50) by 
using GA-ANN descriptors in gas phase.

Figure 4. Plot between observed vs predicted -log (IC50) by 
using GA-ANN descriptors in solvate phas.

Figure 5. Plot between -log IC50 experimental versus the DP03, 
BID, AAC, RDF035v, JGI9, TIE, R7e+, and BELm6 normalized 
descriptors in the gas phase.

The plots of the DP03, BID, AAC, RDF035v, JGI9, TIE, 
R7e+, and BELm6 descriptors (Fig. 5) in the gas phase 
and Mor 32u, ESPm03d, RDF070v, ATS8m and MATS2e, 
R4p, L1u, and R3m descriptors in solvent phase (Fig. 6) 
versus the experimental negative logarithm half maximal 
inhibitory concentration (-logIC50) values were plotted 
using Excel program. The descriptors values in GA-ANN 
method in gas and solvent phase were normalized using 
the equation (2) in Excel program.
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Figure 6. Plot between experimental -log IC50 value versus the 
Mor32u, ESpm03d, RDF070v, ATS8m, MATS2e, R4p, L1u, 
and R3m normalized descriptors in the solvent phase.

Xnormalized = (Xi-Xmin)/(Xmax-Xmin) (2)

The charts in gas phase show that the experimental negative 
logarithm half maximal inhibitory concentration (-lo이C50) 
value increases with increasing DP03 (Molecular profile 
no.3), BID (Balaban ID number), R7e+ (weighted by atomic 
Sanderson electronegativities), and BElm6 (Weighted by 
atomic masses) descriptors. Thus the half maximal inhibitory 
concentration (IC50) value is reduced. Therefore, the afore­
mentioned descriptors are the best among the eight descriptors 
in the gas phase. As the RDF035v (weighted by atomic polar­
izabilities) descriptor increased, the experimental negative 
logarithm half maximal inhibitory concentration (-logIC50) 
value decreased. In JGI9 (topological charge index) descriptor 
of about 0.8, response do not change. But between 0.8-1 
values, an increased experimental negative logarithm half 
maximal inhibitory concentration rate is shown in the bar 
chart. As the TIE (E-state topological parameter) descriptor 
increased up to 0.4, the experimental negative logarithm 
half maximal inhibitory concentration (-log IC50) value 
increased and then, the increased TIE (that are sensitive to 
size, shape, and the electronic characteristics of molecules) 
descriptor decreased the experimental negative logarithm 
half maximal inhibitory concentration value. Charts in 
solvent show that as Mor 32u (indicates that the size of the 
inhibitor molecule has certain effect on the extent of the 
interaction between the drug and molecule), RDF070v (weighted 
by atomic van der waals volumes), R4p (weighted by atomic 
polarizabilities), L1u (size direction index), and R3m (weighted 
by atomic masses) descriptors are increased, the experimental 
negative logarithm half maximal inhibitory concentration 
(-logIC50) value is reduced. However, with an increase in 
ATS8m (Broto-Moreau autocorrelation of a topological 
structure), the amount of experimental negative logarithm half

Table 13. Physico-chemical descriptors in GA-ANN method in gas 
and solvent phase

Descriptors Parameters
RDF035v Molecular polarizability

JGI9 Charge over the atoms in a molecule
ATS8m, BELm6 Weighted by atomic mass

ESpm03d Dipole moment of the molecule
RDF070v Van der Waals volumes

MATS2e, R7e+ Weighted by atomic Sanderson electronegativities

Table 14. The common selected descriptors using QSAR methods

Descriptors QSAR method
R4e+, R5p+ MLR-ANN in gas phase

R7u+ MLR-ANN in solvent
RTe, R6u+ SA-ANN in gas phase

H5m SA-ANN in solvent
R7e+ GA-ANN IN gas phase

R4p, R3m GA-ANN in solvent phase

maximal inhibitory concentration is first increased and 
then reduced, and finally a sharp increase is achieved. In 
increased ESPm03d (Spectral momen 03 edge adj. matrix 
weighted by dipole moments), a constant process exper­
imental negative logarithm half maximal inhibitory con­
centration (-logIC50) is seen, and then subsequently increased. 
MATS2e (weighted by atomic Sanderson electronegativ­
ities) descriptor, which increased the amount of 0.8 changes 
in the experimental negative logarithm half maximal 
inhibitory concentration (-logIC50), cannot be seen. But 
from 0.8 to 1, an increase probe was seen in the experimental 
negative logarithm half maximal inhibitory concentration 
(-log IC50) value.

Selected descriptors that are common between all the 
QSAR methods are shown in Table 14. The GETAWAY

■ R4e+

-A-RTe

)(R5p+

■米・R7u +

^^R6u +

I H5m

R7e+

R4p

.R3m

5

0 0.2 0.4 0.6 0.8 1

GETAWAY descriptors
Figure 7. Plot between GETAWAY descriptors versus -log 
(IC50).
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Table 15. Statistical parameter and QSAR model from the previous literatures

Compounds QSAR model Statistical parameters
4-benzylidene amino benzene sulphonamide derivatives PLSR
Para-substitued aromatic sulfonamides(pentaparamatric) ES-SWR algorithm
Sulfonamide derivatives Leave-one-out (LOO) method
Sulfonamide compounds which includes five acetazolamide derivatives MLR method

R2pred=0.8482
Rpred=0.7296

R=0.881
R=0.94

descriptors played an important role in predicting the -log- 
IC50 of Sulfonamide compounds. The plots of the GET­
AWAY descriptors versus the experimental negative logarithm 
half maximal inhibitory concentration (-logIC50) values 
were plotted using Excel program.

Fig. 7 shows that the -logIC50 value increase with 
increasing R5p, R7u+, H5m, R7e+ descriptors. As the R3m 
descriptor increased the -log IC50 value decreased.

However, with an increased in RTe and R6u+ descriptors 
the amount of -logIC50 is first increased and then reduced 
(Fig. 7). In R4p descriptor the amount of -logIC50 is first 
decreased and then increased. In increased R4e+, a constant 
process -logIC50 is seen. R5p, H5m, R7e+, RTe, R4p, R3m are 
physico-chemical descriptors and These are polarizability, 
weighted by atomic masses and sanderson electronegativities.

Table 13 shows physico-chemical descriptors in GA- 
ANN method in gas and solvent phase.the physico-chem­
ical descriptors were found to have an important role in 
change in activity (Fig. 5, 6). These descriptors reduce the 
half maximal inhibitory concentration (IC50).

Statistical parameter and QSAR model of the sulfon­
amide compounds from the previous literatures are pre­
sented on the Table 15.45-48 It shows that the results of 
GA-ANN method in this work (Table 9) is better than the 
other QSAR models in previous studies.

CONCLUSION

Among the QSAR models used in this study, the non­
linear feature selection models were demonstrated to be 
better than their linear methods, and the results of GA- 
ANN method were better than the other non-linear mod­
els used. These results also proved that DP03, BID, AAC, 
RDF035v, JGI9, TIE, R7e+, BELm6 descriptors in the gas 
phase andMor32니, ESpm03d, RDF070v, ATS8m, MATS2e, 
R4p, L1u, R3m descriptors in the solvent phase were more 
significant than other descriptors in building this QSAR model 
and predicting the biological activity of Sulfonamides 
substitution patterns.

Acknowledgment. Publication cost of this paper was 
supported by the Korean Chemical Society.

REFERENCES

1. Katzung, B. G. In Basic and Clinical Pharmacology, 6th 
ed.; University of California: San Francisco, 1995.

2. Joshi, S.; Khosla, N. Bioorg. Med. Chem. Lett. 2003, 13, 
3747.

3. Joshi, S.; Khosla, N.; Tiwari, P. In VitroStudy of Some 
Medicinally Important Mannich Bases Derived from an 
Antitubercular Agent. Bioorg. Med. Chem. 2004, 12, 571.

4. Anand, N. Sulfonamides and Sulfones, In Burger’ Medici­
nal Chemistry and Drug Discovery; M. E. Wolff, Ed.; John 
Wiley & Sons Inc.: New York, 1996; pp 527.

5. Kamal, A.; Khan, M. N. A.; Reddy, K. S.; Rohini, K.; 
Sastry, G. N.; Sateesh, B.; Sridhar, B. Bioorg. Med. Chem. 
Lett. 2007, 17, 5400.

6. Zimmerman, S.; Innocenti, A.; Casini, A.; Ferry, J. G; 
Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 
2004, 14, 6001.

7. Garaj, V.; Puccetti, L.; Fasolis, G; Winum, J.-Y; Montero, 
J.-L.; Scozzafava, A.; Vullo, D.; Innocentia, A.; Supurana, 
C. T. Bioorg. Med. Chem. Lett. 2004, 14, 5427.

8. Puccetti, L.; Fasolis, G; Vullo, D.; Chohan, Z. H.; Scoz- 
zafavab, A.; Supuranb, C. T. Bioorg. Med. Chem. Lett. 2005, 
15, 3096.

9. Lehtonen, J. M.; Parkkila, S.; Vullo, D.; Casini, A.; Scozzaf- 
avac, A.; Supuranc, C. T. Bioorg. Med. Chem. Lett. 2004, 14, 
3757.

10. Guzel, O.; Innocenti, A.; Scozzafava, A.; Salman, A.; 
Supuran, C. T. Bioorg. Med. Chem. Lett. 2009, 19, 3170.

11. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. 
T. Curr Med. Chem. 2003, 10, 925.

12. Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. 
T.; Scozzafava, A.; Kiebe, G. J. Med. Chem. 2004, 47, 
550.

13. Pubchem Home Page.  
(accessed March 2, 2004).

https://pubchem.ncbi/nlm.nih.gov

14. Dhawan, B. N.; Cesselin, F.; Raghubir, R.; Reisine, T.; 
Bradley, P. B.; Portoghese, P. S.; Hamon, M. Pharmacol. 
Rev. 1996, 48, 567.

15. Janecka, A.; Fichna, J.; Janecki, T. Curr Top. Med. Chem. 
2004, 4, 1.

16. Waldhoer, M.; Bartlett, S. E.; Whistler, J. L. Annu. Rev. 
Biochem. 2004, 73, 953.

17. Schmidi, H. Chemom. Intell. Lab. Sys. 1997, 37, 125.
18. Hansch, C.; Kurup, A.; Garg, R.; Gao, H. Chem. Rev. 2001, 

101, 619.
19. Wold, S.; Trygg, J.; Berglund, A.; Antii, H. Chemom.

2016, Vol. 60, No. 4

https://pubchem.ncbi/nlm.nih.gov


234 Robabeh Sayyadi kord Abadi, Asghar Alizadehdakhel, and Soghra Tajadodi Paskiabei

Intell. Lab. Syst. 2001, 58, 131.
20. Horvath, D.; Mao, B. QSAR. Comb. Sci. 2003, 22, 498.
21. Putta, S.; Eksterowicz, J.; Lemmen, C.; Stanton, R. J. 

Chem. Inf. Comput. Sci. 2003, 43, 1623.
22. Gupta, S.; Singh, M.; Madan, A. K. J. Chem. Inf. Com­

put. Sci. 1999, 39, 272.
23. Consonni, V.; Todechine, R.; Pavan, M. J. Chem. Inf. Com- 

put. Sci. 2002, 42, 693.
24. Kirkpatrick, S.; Gelatt, Jr. C. D.; Vecchi, M. P. Science 

1983, 220, 671.
25. Cerny, V. O. J. Optim. Theory Appl 1985, 45, 41.
26. Winkler, D. A. Brief. Bio. Inform. 2002, 3, 73.
27. Guha, R.; Serra, J. R.; Jurs, P. C. J. Mol. Graph. Model.

2004, 23.
28. DeMelo, E. B.; Ferreira, M. M. Eur J. Med. Chem. 2009, 

44, 3577.
29. Todeschini, R. Milano Chemometrics and QSAR Research 

Group.  (accessed 2000).http://www.disat.unimib.it/chem
30. Schuur, J. H.; Selzer, P.; Gasteiger, J. J. Chem. Inf. Com- 

put. Sci. 1996, 36, 334.
31. Todeschini, R.; Consonni, V. Hand Book of Molecular 

Descriptors; Wiley-VCH.: 2000.
32. Hemmer, M. C.; Steinhauer, V.; Gasteiger, J. Vibr. Spec- 

trosc. 1999, 19, 151.
33. Consonni, V.; Todeschini, R.; Pavan, M. J. Chem. Inf. 

Comput. Sci. 2002, 42, 682.
34. Gramatica, P.; Consonni, V.; Todeschini, R. Chemosphere 

1999, 38, 1371.
35. Gramatica, P.; Consonni, V.; Todeschini, R. Chemosphere

2000, 41, 763.
36. Fatemi, M. H.; Gharaghani, S. Bioorg. Med. Chem. 2007, 

15, 7746.
3 /. j시ali-Heravi, ml, parasiar, f. j. Chem. Inf Comput. soi. 

2000, 40, 147.
38. Levenberg, K. A Method for the Solution of Certain Non­

Linear Problems in Least Squares. Quarterly of Applied 
Mathematics 1944, 2, 164.

39. Horvath, D.; Mao, B. QSAR. Comb. Sci. 2003, 22, 498.
40. SPSS (Version19).  ssc ien  (accessed 

2010).
http://www.sps ce.com

41. Asadollahi, T.; Dadfarnia, S.; Mohammad, A.; Shabani, 
H.; Ghasemi, J. B. MATCHCommun. Math. Comput. Chem. 
2014, 71, 287.

42. Strand website.  
(accessed Oct 24, 2014).

www.strandls.com/sarchitect/…/desctheory

43. Schuur, J. H.; Selzer, P.; Gasteiger, J. J. Chem. Inform. 
Comput. Sci. 1996, 36, 334.

44. Silverman, B. D. J. Chem. Inform. Comput. Sci. 2000, 40, 
1470.

45. Sisodiya, D.; Dashora, K. Int. J. of Phyto. Pharm. 2014, 
4, 153.

46. Melagraki, G; Afantitis, A.; Sarimveis, H.; Igglessi-Mar- 
kopoulou, O.; Supura, C. T. Bioorg. Med. Chem. 2006,
14, 1108.

47. Jaiswal, D.; Karthikeyan, C.; Shirastava, S. K.; Trivedi, P.
Internet Electron. J. Mol. Des. 2006, 5, 345.

48. Eroglu, E.; Turkmen, H.; Guler, S.; Palaz, S.; Oltulu, O.
Int. J. Mol. Sci. 2007, 8, 145.

Journal of the Korean Chemical Society

http://www.disat.unimib.it/chem
http://www.sps
ce.com
http://www.strandls.com/sarchitect/%25e2%2580%25a6/desctheory

