• Title/Summary/Keyword: linear optimal control

Search Result 735, Processing Time 0.027 seconds

Building Indoor Temperature Control Using Control Horizon Method in Cooling Systems (냉방시스템 제어구간설정 방법을 이용한 건물 실내온도 제어)

  • Boo, Chang-Jin;Kim, Jeong-Hyuk;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4902-4909
    • /
    • 2012
  • In this paper, the TOU tariff's based building indoor temperature control algorithm in cooling systems is proposed using control horizon method. A control horizon switching method and linear programming algorithm is used for optimal control, and both TOU and peak tariffs are included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed algorithms.

A Study on the Effectiveness of ILQ Algorithm in Active Structural Control (건축 구조물의 능동 제진에 있어 ILQ 제어 알고리즘의 유용성에 관한 연구)

  • Lee, Jin-Ho;Hwang, I-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.140-145
    • /
    • 2001
  • Various control algorithms are available to suppress the vibration of a system subjected to disturbances. LQ algorithm is simple and easy to implement the hardwares, but it lacks robustness for uncertainties and often causes difficulty in determining the weighting matrices. This study focuses on the effectiveness ILQ(Inverse Linear Quadratic optimal control) algorithm as the alternative to LQ applied to control the vibration of a building under the seismic excitation. The building is of moment resisting steel frames and assumed to behave within the elastic range. The brief overview of LQ and ILQ algorithms is introduced, and the displacement responses of the structure using ILQ algorithm are compared with those obtained from LQ control. The magnitude of control forces are also determined and compared for both LQ and ILQ algorithm.

  • PDF

Optimal Control of a First Order System (일차계통의 최적제어에 관한 연구)

  • 송문현;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper, an optimal control of first order systems is discussed. The control system comprises a main controller and an auxiliary controller. The main controller is designed based on the LQ control scheme including an integrator to remove the off-set. The non-linear auxiliary controller is added parallely to the main controller to obtain a finite time settling control. The control parameters under variation of the system and various coefficients of the performance indices are computed numerically, and the control responses for the system with the proposed controllers demonstrated the usefulness of the control method.

  • PDF

Optimal Control and Robust Control of Rotating Shaft Using Magnetic Bearings (자기베어링을 이용한 회전축의 최적제어 및 강건제어)

  • Kang, Ho-Shik;Jeong, Namheul;Yoon, Il-Soung;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1330-1337
    • /
    • 2004
  • In this study, the equations of motion of a rigid rotor supported by magnetic bearings are derived via Hamilton's principle, and transformed to a state-space form for control purpose. The optimal motion control of rotor magnetic bearing system based on the LQR(linear quadratic regulator) theory is addressed. New schemes related to the selection of the state weighting matrix Q and the control weighting matrix R involved in the quadratic functional to be minimized are proposed. And the robust control of the system with an LMI(linear matrix inequality) based H$_{\infty}$ theory is dealt with in this paper. Loop shapings of TFM (transfer function matrix) are used to increase the performance of control capability of the system. The control abilities of LQR and H$_{\infty}$ controller are compared by simulation and experimental tests and show that the capability of H$_{\infty}$ controller is superior to that of LQR.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Development of Optimal Control System for Air Separation Unit

  • Ji, Dae-Hyun;Lee, Sang-Moon;Kim, Sang-Un;Kim, Sun-Jang;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.524-529
    • /
    • 2004
  • In this paper, We described the method which developed the optimal control system for air separation unit to change production rates frequently and rapidly. Control models of the process were developed from actual plant data using subspace identification method which is developed by many researchers in resent years. The model consist of a series connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model, subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at real time.

  • PDF

Robust moving horizon control of nonlinear systems

  • Yang, Hyun-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.279-282
    • /
    • 1995
  • In this paper, a moving horizon control algorithm, which can be applied for a wide class of nonlinear systems with control and state constraints, is considered. In a neighborhood of the origin, a linear feedback controller is applied. Outside this neighborhood, a moving horizon control law is applied. The time taken to solve an optimal control problem is considered in the algorithm so that the proposed control law can be applied as an on-line controller.

  • PDF

Looper-Tension Control of Strip Top-Tail Parts for Hot Rolling Mills (열간압연공정의 스트립 선미단부 루퍼-장력 제어)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • This paper designs a looper-tension controller for strip top-tail parts in hot strip finishing mills. A three-degree linear model of the looper-tension system is derived by a Taylor's linearization method, where the actuator's dynamics are ignored because of their fast responses. A feedforward shaping controller for the strip top part and a feedforward model reference controller for the strip tail part are respectively designed, they are combined with an ILQ(Inverse Linear Quadratic optimal control) feedback controller for the strip middle part. It is shown from by a computer simulation that the proposed controller is very effective to the strip top-tail parts including the middle part.

Study on the Optimal Posture for Redundant Robot Manipulators Based on Decomposed Manipulability (분리된 조작도를 이용한 여유자유도 로봇의 최적 자세에 관한 연구)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.249-256
    • /
    • 1999
  • The conventional robot manipulability is decomposed into linear manipulability and angular manipulability so that they may be analysed and visualized in easy way even in the case of 3 dimensional task space with 6 variables. After the Jacobian matrix is decomposed into linear part and angular part, constraint on joint velocities is transformed into linear task velocity and angular task velocity through the decomposed Jacobian matrices. Under the assumption of redundant robot manipulators, several optimization problems which utilize the redundancy are formulated to be solved by linear programming technique or sequential quadratic programming technique. After deriving the solutions of the optimization problems, we give graphical interpretations for the solutions.

  • PDF

Neighboring Optimal Control using Pseudospectral Legendre Method (Pseudospectral Legendre법을 이용한 근접 최적 제어)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • The solutions of neighboring optimal control are typically obtained using the sweep method or transition matrices. Due to the numerical integration, however, the gain matrix can become infinite as time go to final one in the transition matrices, and the Riccati solution can become infinite when the final time free. To overcome these disadvantages, this paper proposes the pseudospectral Legendre method which is to first discreteize the linear boundary value problem using the global orthogonal polynomial, then transforms into an algebraic equations. Because this method is not necessary to take any integration of transition matrix or Riccati equation, it can be usefully used in real-time operation. Finally, its performance is verified by the numerical example for the space vehicle's orbit transfer.