• Title/Summary/Keyword: linear motion

Search Result 2,022, Processing Time 0.036 seconds

Simple analytical method for predicting the sloshing motion in a rectangular pool

  • Park, Won Man;Choi, Dae Kyung;Kim, Kyungsoo;Son, Sung Man;Oh, Se Hong;Lee, Kang Hee;Kang, Heung Seok;Choi, Choengryul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.947-955
    • /
    • 2020
  • Predicting the sloshing motion of a coolant during a seismic assessment of a rectangular spent fuel pool is of critical concern. Linear theory, which provides a simple analytical method, has been used to predict the sloshing motion in rectangular pools and tanks. However, this theory is not suitable for the high-frequency excitation problem. In this study, the authors developed a simple analytical method for predicting the sloshing motion in a rectangular pool for a wide range of excitation frequencies. The correlation among the linear theory parameters, influencing on excitation and convective waves, and the excitation frequency is investigated. Sloshing waves in a rectangular pool with several liquid heights are predicted using the original linear theory, a modified linear theory and computational fluid dynamics analysis. The results demonstrate that the developed method can predict sloshing motion over a wide range of excitation frequencies. However, the developed method has the limitations of linear solutions since it neglects the nonlinear features of sloshing motion. Despite these limitations, the authors believe that the developed method can be useful as a simple analytical method for predicting the sloshing motion in a rectangular pool under various external excitations.

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

ESTIMATION OF DRIFT PARAMETER AND CHANGE POINT VIA KALMAN-BUCY FILTER FOR LINEAR SYSTEMS WITH SIGNAL DRIVEN BY A FRACTIONAL BROWNIAN MOTION AND OBSERVATION DRIVEN BY A BROWNIAN MOTION

  • Mishra, Mahendra Nath;Rao, Bhagavatula Lakshmi Surya Prakasa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1063-1073
    • /
    • 2018
  • We study the estimation of the drift parameter and the change point obtained through a Kalman-Bucy filter for linear systems with signal driven by a fractional Brownian motion and the observation driven by a Brownian motion.

Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot (2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향)

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

Development of Monitoring and Diagnosis System for Linear Motion Unit (직선 운동 유닛의 감시 및 진단 시스템 개발)

  • Huang, Jian;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.635-636
    • /
    • 2012
  • In the present work, investigations by high frequency resonance technique for diagnosis of defect frequencies of linear motion unit are reported. Raw vibration signature of the moving parts at different speeds of operation has been demodulated. Envelope detected spectrum is analyzed to evaluate various defect frequencies and their energy levels. Experimentally evaluated frequencies are compared with theoretically determined defect frequencies. These frequency values and their energy levels are used to monitor intrinsic condition of linear motion unit as well as to establish severity of existing/developed defects on the LM guide and inside the LM block. Relative comparisons of linear motion units of the same type are made at various operating speeds under identical conditions of operation on the basis of identified defect frequencies and severity of defects.

  • PDF

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

Development of plane Motion Accuracy Measurement Unit of NC Lathe (NC 선반의 정면 운동정도 측정장치의 개발)

  • 김영석;한지희;정정표;윤원주;송인석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

Development of Motion Generator Based on Implementation of Active Impedance (능동 임피던스의 구현에 기초한 운동 발생기의 개발)

  • 이세한;송재복;김용일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.160-166
    • /
    • 1998
  • In this research a 2-dimensional motion generator composed of two linear motors was developed. The inertia, damping and/or stiffness characteristics of the motion generator can be changed on the real-time basis by properly regulating the force generated by the linear motors. That is, active impedance is implemented without actual change in the physical structure of the motion generator. Control of the motor force is carried out by controlling the input currents supplied to the linear motors based on the combination of the PI controller and feedforward controller. This motion generator can be used to measure a kinesthetic sense associated with the human arm and thus to develop the products for which the kinesthetic sense is taken into account.

  • PDF

Analysis of the Motion Accuracy in Linear Motion Bearing Guide (직선베어링 이송계의 운동정밀도 해석)

  • 김경호;이후상;박천홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.179-183
    • /
    • 2000
  • This paper is concerned with achieving the high motion accuracy of linear motion bearing guide according to estimate accuracy average effect of bearing. Accuracy average effect can be obtained b analysis the relationship between motion error of the table and spatial frequency of the rail form error. And influences of ball diameter, ball number, and clock length on block motion error and block number on the table motion error are analyzed theoretically. In addition to, a simple experiment is performed in order to verify theoretical result.

  • PDF

Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings (볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF