• Title/Summary/Keyword: linear mixed model (LMM)

Search Result 7, Processing Time 0.016 seconds

Analysis of Break in Presence During Game Play Using a Linear Mixed Model

  • Chung, Jae-Yong;Yoon, Hwan-Jin;Gardne, Henry J.
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.687-694
    • /
    • 2010
  • Breaks in presence (BIP) are those moments during virtual environment (VE) exposure in which participants become aware of their real world setting and their sense of presence in the VE becomes disrupted. In this study, we investigate participants' experience when they encounter technical anomalies during game play. We induced four technical anomalies and compared the BIP responses of a navigation mode game to that of a combat mode game. In our analysis, we applied a linear mixed model (LMM) and compared the results with those of a conventional regression model. Results indicate that participants felt varied levels of impact and recovery when experiencing the various technical anomalies. The impact of BIPs was clearly affected by the game mode, whereas recovery appears to be independent of game mode. The results obtained using the LMM did not differ significantly from those obtained using the general regression model; however, it was shown that treatment effects could be improved by consideration of random effects in the regression model.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Comparison of MLE and REMLE of Linear Mixed Models in Assessing Bioequivalence based on 2x2 Crossover Design with Missing data

  • Chung, Yun-Ro;Park, Sang-Gue
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1211-1218
    • /
    • 2008
  • Maximum likelihood estimator (MLE) and restricted maximum likelihood estimator (REMLE) approaches are available in analyzing the linear mixed model (LMM) like bioequivalence trials. US FDA (2001) guides that REMLE may be useful to assess bioequivalence (BE) test. This paper studies the statistical behaviors of the methods in assessing BE tests when some of observations are missing at random. The simulation results show that the REMLE maintains the given nominal level well and the MLE gives a bit higher power. Considering the levels and the powers, the REMLE approach is recommended when the sample sizes are small to moderate and the MLE approach should be used when the sample size is greater than 30.

  • PDF

The effect of missing levels of nesting in multilevel analysis

  • Park, Seho;Chung, Yujin
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.34.1-34.11
    • /
    • 2022
  • Multilevel analysis is an appropriate and powerful tool for analyzing hierarchical structure data widely applied from public health to genomic data. In practice, however, we may lose the information on multiple nesting levels in the multilevel analysis since data may fail to capture all levels of hierarchy, or the top or intermediate levels of hierarchy are ignored in the analysis. In this study, we consider a multilevel linear mixed effect model (LMM) with single imputation that can involve all data hierarchy levels in the presence of missing top or intermediate-level clusters. We evaluate and compare the performance of a multilevel LMM with single imputation with other models ignoring the data hierarchy or missing intermediate-level clusters. To this end, we applied a multilevel LMM with single imputation and other models to hierarchically structured cohort data with some intermediate levels missing and to simulated data with various cluster sizes and missing rates of intermediate-level clusters. A thorough simulation study demonstrated that an LMM with single imputation estimates fixed coefficients and variance components of a multilevel model more accurately than other models ignoring data hierarchy or missing clusters in terms of mean squared error and coverage probability. In particular, when models ignoring data hierarchy or missing clusters were applied, the variance components of random effects were overestimated. We observed similar results from the analysis of hierarchically structured cohort data.

Body Measurement Changes and Prediction Models for Flight Pilots in Dynamic Postures (자세에 따른 부위별 체표길이 변화량 분석 및 예측모형 개발 -공군 전투조종사를 대상으로-)

  • Lee, Ah Lam;Nam, Yun Ja;Chen, Lin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.84-95
    • /
    • 2020
  • Wearing ease is a critical factor when designing special uniforms such as flight pilot's garment and should reflect occupational properties for better performance. This study measured skin surface on 31 areas in seven postures that refer to the pilot's occupational postures as well as made six prediction models including linear mixed model (LMM) for each body part to find the best fit model. Skin surface measured from 3D body scanned images of 11 male pilot participants. There were significantly positive and negative changes in various areas from standing posture (P1) to dynamic postures (P2-P7). Six models were designed in various compositions using stature and chest circumference as fixed effects and subject and posture as random effects. The best models were linear mixed models with one fixed effect (chest circumference or stature, varies with body parts) and two random effects (subject and posture). The results of this study provide reference data to set wearing ease for pilot's garment and suggests a new methodology in this research area, but verifying the effect of diverse independent variables is left for future studies.

Modelling Stem Diameter Variability in Pinus caribaea (Morelet) Plantations in South West Nigeria

  • Adesoye, Peter Oluremi
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.280-290
    • /
    • 2016
  • Stem diameter variability is an essential inventory result that provides useful information in forest management decisions. Little has been done to explore the modelling potentials of standard deviation (SDD) and coefficient of variation (CVD) of diameter at breast height (dbh). This study, therefore, was aimed at developing and testing models for predicting SDD and CVD in stands of Pinus caribaea Morelet (pine) in south west Nigeria. Sixty temporary sample plots of size $20m{\times}20m$, ranging between 15 and 37 years were sampled, covering the entire range of pine in south west Nigeria. The dbh (cm), total and merchantable heights (m), number of stems and age of trees were measured within each plot. Basal area ($m^2$), site index (m), relative spacing and percentile positions of dbh at $24^{th}$, $63^{rd}$, $76^{th}$ and $93^{rd}$ (i.e. $P_{24}$, $P_{63}$, $P_{76}$ and $P_{93}$) were computed from measured variables for each plot. Linear mixed model (LMM) was used to test the effects of locations (fixed) and plots (random). Six candidate models (3 for SDD and 3 for CVD), using three categories of explanatory variables (i.e. (i) only stand size measures, (ii) distribution measures, and (iii) combination of i and ii). The best model was chosen based on smaller relative standard error (RSE), prediction residual sum of squares (PRESS), corrected Akaike Information Criterion ($AIC_c$) and larger coefficient of determination ($R^2$). The results of the LMM indicated that location and plot effects were not significant. The CVD and SDD models having only measures of percentiles (i.e. $P_{24}$ and $P_{93}$) as predictors produced better predictions than others. However, CVD model produced the overall best predictions, because of the lower RSE and stability in measuring variability across different stand developments. The results demonstrate the potentials of CVD in modelling stem diameter variability in relationship with percentiles variables.

Estimating the Impact of Plant Surface Area Increase and Physiological Activities on Fine Dust Purification (식물에 의한 표면적 증가와 생리작용이 미세먼지 정화에 미치는 영향 추정)

  • Deuk-Kyun Oh;Sung-Soo Lim;Jeong-Ho Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.4
    • /
    • pp.426-433
    • /
    • 2024
  • In this study, to estimate the effects of plant-induced surface area increase and physiological activity on fine dust purification, a control group was set up. We utilized both foliage plants (Spathiphyllum wallisii) and artificial plants (shaped like Spathiphyllum wallisii) to measure and compare the purification time for fine dust. The results showed that the time required for fine dust purification in each experimental group decreased by 57-64% for Type AP and 31-32% for Type P compared to the control group. Subsequently, using a Linear Mixed Model (LMM), we tested the interaction between time and each experimental group, revealing statistically significant interactions between surface area increase and time(PM10 : t=3.123, p<0.05, PM2.5 : t=3.180, p<0.05), as well as physiological activity and time(PM10 : t=4.065, p<0.05, PM2.5 : t=4.307, p<0.05), indicating the presence of interactions between each factor and the time variable. Finally, we estimated the efficiency of fine dust purification by plant factors through nonlinear regression analysis. Compared to the control group without purification factors (Type C), it was estimated that surface area increase shortened the purification time by 1.40 times and physiological activity by an average of 1.95 times, resulting in a total 2.74 times shorter purification time. Based on these results, we hypothesized that physiological activity(transpiration and absorption) has a greater impact on fine dust purification than surface area increase(biosorption). Accordingly, we emphasize the importance of vegetation management practices such as pruning and irrigation management in green spaces aimed at fine dust purification.