• Title/Summary/Keyword: linear matrix inequalities(LMI)

Search Result 142, Processing Time 0.019 seconds

A study on the Stability of Discrete-time Affine Type III Fuzzy Control System (이산 시간 어핀 Type III 퍼지 제어 시스템의 안정도에 대한 연구)

  • Kim, Eun-Tai;Lee, Hee-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • In this paper, we propose the stability analysis and design methodology for the discrete-time affine Type III fuzzy system via the convex optimization technique. First, the stability condition is derived under which the discrete-time affine Type III fuzzy system is quadratically stable in the large. Next, the derived condition is reformulated into the convex optimization problem called Linear Matrix Inequalities (LMI) and numerically addressed. Finally, the effectiveness and the feasibility of the proposed analysis and design methodology is highlighted via an example and its computer simulation result.

  • PDF

$H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR Filters for Discrete-time State Space Models

  • Lee, Young-Sam;Jung, Soo-Yul;Seo, Joong-Eon;Han, Soo-Hee;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.401-404
    • /
    • 2003
  • In this paper, $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filters are newly proposed for discrete-time state space signal models. The proposed filters require linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrat that the proposed FIR filter is more robust against uncertainties and has faster convergence than the conventional IIR filters. the conventional IIR filters.

  • PDF