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Abstract:

In this paper, Hz, He, and mixed Hy/Hqs FIR filters are
newly proposed for discrete-time state space signal mod-
els. The proposed filters require linearity, unbiased prop-
erty, FIR structure, and independence of the initial state
information in addition to the performance criteria in both
H; and Ho sense. It is shown that H;, Heo, and mixed
H>/Hy FIR filter design problems can be converted into
convex programming problems via linear matrix inequali-
ties (LMIs) with a linear equality constraint. Simulation
studies illustrat that the proposed FIR filter is more robust
against uncertainties and has faster convergence than the
conventional [IR filters.
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I. Introduction

The estimation problem deals with recovering some un-
known parameters or variables from measured information
in physical or mathematical models. Among estimation
problems, the state estimator, called the filter, has been
widely investigated for wide applications. The performance
of the filter is measured by stability, small error, and in-
sensitivity or robustness to signal model uncertainties and
disturbances.

For a small error, it is usual to require the filter to be unbi-
ased. For stochastic systems, an unbiased filter means that
no matter what the real state is, the filter will follow it on
the average. This also means that if there is no noise in
the systems the filter will follow the real state exactly. In
a similar way to the stochastic case, filters for deterministic
systems can adopt the unbiased property in a deterministic
sense. The unbiasedness for deterministic systems requires
the filters to match exactly the real states of systems with
zero disturbances. In short, “the unbiased property” will be
used even for deterministic systems throughout this paper.
The terminology “deadbeat” has also been used in other
studies instead of “unbiased”.

Some prefer finite impulse response (FIR) filters to infinite
impulse response (IIR) filters for robustness and stability.

FIR filters make use of a finite number of measurements and
inputs on the most recent time interval [k — N, k — 1], called

the receding horizon, or the moving window. It has been
generally accepted that the FIR structure is more robust to
temporary modeling uncertain parameters and numerical
errors than the IIR structure. Additionally, bounded input
bounded output (BIBO) stability is always guaranteed for
FIR filters.
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In conventional filters that estimate states, the initial state
information is often assumed to be known even if the initial
state is also_a state to be estimated. This is not reason-
able. Therefore, in this paper the initial state information
is assumed to be completely unknown. That is, the sug-
gested filters will be obtained independently of the initial

state information. . .
Filter properties depend heavily on the performance crite-

rion. In this paper, to obtain the optimal filter for state
space models, two types of performance criterion are con-
sidered. In the H, performance criterion, the H2 norm of

the transfer function from the disturbance to the estima-
tion error is minimized {1, 2, 3]. This approach has been

widely used and researched because it is tractable mathe-
matically. In the Ho performance criterion, the worst case
gain between disturbance and estimation error is minimized
{4, 5, 6, 7). More recently, there have been approaches that
consider both the performance criteria simultaneously [8].
Existing FIR filters are mainly focused on the minimum
variance criterion that is a special case of the H2 perfor-
mance criterion {9, 10]. The Ho, FIR filtering problem was
first considered in {11]. The Ho FIR filter presented in {11}
is obtained by repeatedly solving a finite horizon H,. filter-
ing problem. However, in practice it neither guarantees the
H,, norm bound nor has state independence. In this paper,
among linear FIR filters with the unbiased property that is
also independent of the initial state, an optimal filter will be
chosen according to the Hy, Hoo and Hy/H., performance
criteria.

The proposed Haz/Ha FIR filter is both unbiased and op-
timal by design for the given performance criterion. The
‘by design’ means that the unbiased property and optimal-
ity are simultaneously built into the proposed FIR filter
during its design. Actually, the unbiased property of the
proposed FIR filter avoids the unnecessary large estimation
error. The proposed FIR filter is represented as both a stan-
dard batch form and an iterative form.

II. Problem Statement

Consider the following linear discrete-time state space
signal model

Azy + Bug + Gy,

Tg+1
Czi + Dwx

Yk

(1)

where zx € R™ is the state, ux € R! is the input, yx € R?
is the measured output, and wx € R” is the disturbance
input (such as a disturbance, process/sensor noise). In the
case of no disturbance input, the system (1) becomes

Tkl
Yk

Az + Buy
Cxy :

(2)
The system in (2) will be called the nominal system.
Conventional filters of IIR structure are of the following
form:

.’ik+1 =A.’i‘k+Buk +K(yk —Cik), (3)

where K is the filter gain matrix. Define Tk (2), the trans-
fer function from the disturbance input w to the estimation
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error e. Then, depending on estimation performance crite-
rion, three filtering problems of the IIR type are formulated
as follows:
o H, filtering problem : Find the filter (3) that minimizes
1T« (2)ilz-

e H,, filtering problem : Find the filter (3) that mini-
mizes [Tk (2){loo-

o Mixed Hz2/H, filtering problem : Find the filter (3)
that minimizes {|Tx (z)]leo Subject to [Tk (2){l2 < B (or
minimizes [Tk (2)||2 subject to || Tk (2)llec < B).

o L e Hens Sepending o the perfor
mance criterion. The aim of this paper is to develop design
methods for FIR filters with a batch form

Zx = HY, o1 + LUp (4)
as solutions to those three FIR filtering problems.

H and L in (4) are the gain matrices of a linear filter rep-
resented by

H & [Hy Hyn- Hy,
L & [Ly Ly-1 -+ Li}
Ug_y and Yi_1 are defined as
Uy 2 [UE—N u:~—N+1 Uf«l]Tr (5)
Yioy & hlZ‘-N yZ-N+1 : y{-llT' (6)
ue—; and Yx—i, where i =1,--- , N, are the inputs and out-

puts, respectively, at time k — 4. It is noted that the esti-
mate &, in (4) is a linear function of the finite number of
inputs and measurements on the most recent time interval
[k = N,k — 1], called the horizon. N, which is a positive
integer, is a horizon length.

We require that the filter in (4) be independent of any a
priori information about the horizon initial state, Tx—n, by
making a filter of FIR structure. Furthermore, we require
an unbiased property that the FIR filter in (4) satisfies the
following relation for the nominal system (2):

Zx = i for any Tx-nN. (7)

To determine the constraint required for (7) to be satisfied,

enote the measurements on the most recent time interval
k—N,k— ﬁl in terms of the state x, at the current time k
as

Yeo1 = Cnze+ ByUk-1 + (Gy + DN)Wia (8)
where
Wi & . wz‘—l}T' 9

Cn, Bn, Gy, and Dy are constant matrices obtained either
in a batch form or in a recursive form as

T T
fwr-N Wk-ny1 -

cA™
CA™™H!
g & CA™™E
cA™
[ CA7'B CA™’B CA™'B ]
0 CA™'B CA~+B
B & - 0 0 CA—*'B |
L 0 0 CA;IB
[ CA™'G CA™'G CA™'G ]
0 CA™'G CA—HIG
g & - 0 0 cA—™G |
L o 0 cAG |
D; = [diag(DD --- D)],

where 1<i< N
For a nominal system (2) we obtain, from (8),

%y = HYs_1+ LUi—1 =HCnzx + HByUi—1 + LUx_1.

Therefore, the constraints on H and L required to satisfy
(7) are given by

HCy =1, HBy=-L. (10)

From (10), we rewrite the FIR filter in (4) as

Ze = H(Yk-1 — BnUk_.l), HCy = 1. (11)

The constraint HCxy = I will be called the unbiased con-

straint in the sense that it is an unbiased canstraint for the
nominal system (2) with zero disturbance, but may not be

an unbiased constraint for the system (1) with nonzero dis-
turbance input.

Define Th(z) as the transfer function from the disturbance
input w to the estimation error e of an FIR filter (11). Then
we can formulate three FIR filtering problems as follows:

e H, FIR filtering problem : Find the filter (11) that
minimizes {|Tx (2)ll2-

e H FIR filtering problem : Find the filter (11} that
minimizes ||T# (2)]|oo-

e Hy/Hs FIR filtering problem : Find the filter (11)
that minimizes [T (z)[|oo subject to || Tu(2)ll2 < B (or
minimizes [Ty (2){j2 subject to {|Th (2}l < B)-

In the next section, we present the formulation of the above
FIR filtering problems in terms of LMIs.

III. H,;/H, FIR Filtering via

LMIs

3.1 Error Dynamics of FIR Filters

As a starting point we derive the transfer function Tx(2).
The disturbance input w satisfies the following state model
on Wl;_l

Wi = AuWi_y + Buwk, (12)
where
071 0 0 0
0
0 0 I
Au = . s Bu = Y
. 0 N
0 0 0 I I
0 0 0 0

1t is noted that A, € RPY*PY and B, € RPV*P, 1t follows
from (8) that

Yi1 — BnUk-y —Cnzi = (Gn + Dn)Wi-1. (13)
Pre-multiply (13) by H. From (11), we obtain

ex = 2k — zk = H(Gn + DN)Wi_1. (14)
From (12) and (14}, Tu(z) is given by

Telz) = #{Cn + D)zl - Au) "' B.. (15)
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3.2 H; FIR Filtering

Given a system transfer function

G2 [—3,1—(3,—] = C(I - A)'B,

it is well-known that {|G(z)]]. is given by

IG@)l2 = Vtr(CPCT), (16)

where P is the controllability Grammian given by

P=>Y A'BBT(A"),
i=0

and obtained as the solution to the following Lyapunov
equation

APAT - P+ BBT =0.
Therefore, we have the following theorem for the H; FIR
filter:

Theorem 1. Assume that the following LMI problem is
feasible:

min tr(W) subject to
W

[ (FM + Ho)(Gn + D) ]>0

where Ho = (CECN)ICY and M7 is the base of the null
space of C%. Then the optimal gain matriz of the Hy FIR
filter of the form (11) is given by

H=FM+ H,.

Proof. The constraint HCnx = I is required for the FIR
filter to be of the form (11). H; norm of the transfer function
Tu(z) in (15) is obtained by
s ()17 = e(H(En + Dn)P(Gn + Dn)THT),

where

* . .

P=3" ALB.BI(AT]).
i=0

Because AL = 0 for i > N, we obtain

o0 N-1
P =3 A.B.BI(A])' = ) ALB.B(A])' =1
i=0 i=0

Therefore
I Ts ()3 = tr(H(Gn + Dv)(@n + Dn)THT).  (18)
Introduce a matrix variable W such that
W > H(Gn + Dn)(Gn + Dn)THT. (19)

Then tr{W) > IT#(z)||2. By the Schur complement, (19) is
equivalent to

w H(Gn + Dn

{ (Gn + DN)THT ( I ) } >0 (20)
Therefore, by minimizing tr(W) subject to the equality con-
straint HCn = I and the above LMI, we obtain the optimal
gain matrix H of the Hy FIR filter. The equality constraint
HCy = I can be eliminated by computing the null space of
C¥. All solutions to the equality constraint HCny = I are
parameterized by

H =FM + Ho, (21)

where F is a matrix containing the independent variables.
Replacing H by FM + Hp, the LMI condition in (20) is
changed into (17) This completes the proof. a

3.3 H, FIR Filtering

For the system transfer function

() & [-645] = cer- a4+ D,

it 1s well known from the bounded real lemma that, given
v > 0, the following two conditions are equivalent:

(1) G2l <.

{2) There exists an X > 0 such that
-X XA XB 0
ATX -x o (%
BT o -qI DT

0 c B -7

From this, we obtain the following theorem for the optimal

H., FIR filter.

Theorem 2. Assume that the following LMI problem is
feasible:

i bject t
min 7o subject to

<0

-X XA, XB. B B TO r

* -X 0 Gy + Dy) (FM + H,

* * — Yool (G ~) ) ) <o.
* * * Yool

where Hy = (CECN)ICE and MT is the base of the null
space of C%. Then, the optimal gain matriz of the Hoo FIR
filter of the form (11) is given by

H = FM + Hp.
Proof. From the bounded real lemma, the condition for

I|Te (2){loe € Yoo is equivalent to the condition under which
there exists X > 0 such that

-X XA, XB. 0
AJTX -X 0 (Gn + D)THT <0
B, TX 0 ool 0 :

0 H(Gy+Dn) ©

The equality constraint H Cn = I can be eliminated in ex-
actly the same way as in H, FIR filter. This completes the
proof. a

~Yoo I

3.4 Mixed Hy/H, FIR Filtering

From the previous two subsections, the formulation of the
H;/H FIR filtering problem via LMIs is obvious. There-
fore, we obtain the following theorem for the Ha/Ho FIR
filter:

Theorem 3. Given a > 1, assume that the following LMI
problem is feasible:

erl)?:lp Yoo Subject to
tr(W) < ayy

[ ‘/}(’ (FM+HO)I(GN+DN) ] >0,

-X XA, XB. B B 79 r
* -X 0 Gy + Dy)T(FH + H,
[ * * —Yool ( ) 0 o) <0
* * * Yool

where Hy = (CHCn)"'CT and M7 is the base of the null
space of C%. Then, the gain matriz of the Hz/ Hoo FIR filter
of the form (11) is given by

H = FM + Ho.

The above mixed Hz/Ho FIR filtering problem allows us
to design the optimal FIR filter with respect to the Heo
norm while assuring a prescribed performance level in the
H; sense. By adjusting a > 0, we can trade off the He
performance against the Ha performance.
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Table 1: H; and Ho norm for N =10 and a = 1.3

‘H,, norm | H; norm
Ho IIR filter 2.0009 2.0223
H, ITR hlter 2.9043 1.8226
Hy FIR filter 4.2801 3.7295
mixed H; FIR Riter 5.4287 2.7624
H;/Ho FIR filter 4.4827 3.1497

Ha IR filter, Hyo IR filter
HifHe FIR filter

Figure 1: Estimation error in the state z;

IV. Numerical Example

To iltustrate the validity of the proposed FIR filter, numer-
ical examples are given for a linear discrete-time invariant
state space model from [9]

B = | 0008 092?58+5(k) Jor+ [ 81 J s
TR

Yk {1 Olzx+[0 Ljws

where & is an model uncertain parameter.

We have designed a mixed Hz/Heo filter with N =10, a =
1.3, and d; = 0. Table 1 compares the H; and Hy norms
of the conventional IIR filters and the proposed FIR filters.
It is shown that the performances of the proposed H2, Hoo,
and mixed Ho/Ho FIR filter are worse than those of con-
ventional IIR filters. However, this is not necessarily true in
real applications. As mentioned previously, the FIR filters
are more robust against temporary modeling uncertainties
because they utilize only finite measurements on the most

recent horizon, To illustrate this eature ang the fast conver-
gence, we applied the mixed Hz/Ho FIR filter to a system

that has temporary uncertainty. The uncertain parameter
&« is assumed to be

(k) :{ (1);

Figure 1 compares the estimation errors where the distur-
bance input w; is stochastic noise given by

50 < k£ <100
otherwise

w(k) = [ m’;g ] where wy ~ (0,1), w2 ~ (0, 1).

It is clearly shown that the proposed H;/Ho FIR filter is
more robust for the uncertainty and faster in convergence.
Therefore, it is expected that the proposed FIR filter can
be usefully used in real applications.

V. Conclusions

In this paper, Hz, Hoo, and mixed Ha/Hoo filters are
proposed for discrete-time state space signal models. The
filtering problems are formulated in ferms of linear matrix
inequalities. The proposed filters have many desirable prop-
erties, that is, the filters are linear with the most recent
finite measurements and inputs, do not require a priors in-
formation of the horizon initial state, and have the unbiased
property for zero disturbance. Furthermore, due to the FIR
structure, the proposed FIR filters are believed to be robust
against temporary modeling uncertainties or numerical er-
rors, while other IIR filters, such as Kalman filters and Hoo
filters, may show poor robustness in these cases. The pro-
posed FIR filters will be useful for many signal processing
problems where signals are represented by state space mod-
els.
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