• Title/Summary/Keyword: linear manifold

Search Result 62, Processing Time 0.027 seconds

Parameter estimation of linear function using VUS and HUM maximization (VUS와 HUM 최적화를 이용한 선형함수의 모수추정)

  • Hong, Chong Sun;Won, Chi Hwan;Jeong, Dong Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1305-1315
    • /
    • 2015
  • Consider the risk score which is a function of a linear score for the classification models. The AUC optimization method can be applied to estimate the coefficients of linear score. These estimates obtained by this AUC approach method are shown to be better than the maximum likelihood estimators using logistic models under the general situation which does not fit the logistic assumptions. In this work, the VUS and HUM approach methods are suggested by extending AUC approach method for more realistic discrimination and prediction worlds. Some simulation results are obtained with both various distributions of thresholds and three kinds of link functions such as logit, complementary log-log and modified logit functions. It is found that coefficient prediction results by using the VUS and HUM approach methods for multiple categorical classification are equivalent to or better than those by using logistic models with some link functions.

A Study on the Spray and Combustion Characteristics of Direct-injection LPG (직접분사식 LPG의 분무 및 연소 특성에 관한 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2015
  • As advantages of LPG-DI engine, LPG is directly injected into combustion chamber during compression stroke to reduce compression temperature, prevent knock and spontaneous combustion, and adjust engine output using the amount of directly injected fuel, thereby reducing pumping loss caused by throttle valve. Stratified charge can be supplied nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In addition, it is characterized by free designing of intake manifold. Despite the fact that LPG-DI has many advantages as described above, there is lack of detailed investigation and study on spray characteristics, combustion flame characteristics, and ignition probability. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For supply of stratified charge in the combustion chamber, alignment of injector and spark plugs was made linear.

The Control of Inverted Pendulum System Using Approximated Nonlinear Feedback Linearization (근사 비선형 궤환 선형화를 이용한 도립 진자 계통의 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.372-384
    • /
    • 1993
  • The inverted pendulum system has interesting and challenging problems related to robotics and rocket attitude control view of both control theory and applications. Generally approximately linearized plant models are employed to control the system. In this paper a recently developed control theory based on differentiable manifold theory is used to control the inverted pendulum system which is typically nonlinear. First, the nonlinear model is transformed into the approximate feedback linearized system by nonlinear state feedback. Secondly, the linear controller is designed using the pole-placement method for the approximate feedback linearized plant model, the output of which are finally inverse-transformed to yield the control input to the actual system of the inverted pendulum. The proposed method is evaluated by the computer simulation to compare with the 3rd order linearization model.

  • PDF

A Kurtosis-based Algorithm for Blind Sources Separation Using the Cayley Transformation And Its Application to Multi-channel Electrogastrograms

  • Ohata, Masashi;Matsumoto, Takahiro;Shigematsu, Akio;Matsuoka, Kiyotoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.471-471
    • /
    • 2000
  • This paper presents a new kurtosis-based algorithm for blind separation of convolutively mixed source signals. The algorithm whitens the signals not only spatially but also temporally beforehand. A separator is built for the whitened signals and it exists in the set of para-unitary matrices. Since the set forms a curved manifold, it is hard to treat its elements. In order to avoid the difficulty, this paper introduces the Cayley transformation for the para-unitary matrices. The transformed matrix is referred to as para-skew-Hermitian matrix and the set of such matrices forms a linear space. In the set of all para-skew-Hermitian matrices, the kurtosis-based algorithm obtains a desired separator. This paper also shows the algorithm's application to electrogastrogram datum which are observed by 4 electrodes on subjects' abdomen around their stomachs. An electrogastrogram contains signals from a stomach and other organs. This paper obtains independent components by the algorithm and then extracts the signal corresponding to the stomach from the data.

  • PDF

TRANSIENT PERFORMANCE OF AN SI ENGINE BY TRANSIENT RESPONSE SPECIFICATIONS

  • Kwark, J.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.109-117
    • /
    • 2003
  • The analysis and evaluation of the transient performance by the transient response specifications under various acceleration speeds and types based on driver's typical acceleration habit are implemented by the experimental study to provide the appropriate direction for the transient control in a gasoline engine. The concept of the transient response specifications which consist of delay time, rising time, maximum overshoot and settling time, and the analysis method using them are introduced to evaluate the characteristics of the transient performance quantitatively. Furthermore four acceleration speeds and four acceleration types are set respectively to realize the various transient states which are similar to the real drive. Several performance parameters in terms of engine speed, manifold absolute pressure, fuel injection duration and air excess ratio are measured simultaneously during the various acceleration using a throttle actuator controlled by a PC. The transient response specifications characterized well the transient performance for the various acceleration speed and types quantitatively. Delay and rising time with increment of the acceleration speed became shorter, but settling time did longer. Intensified acceleration type appeared to be the most economical in view of fuel consumption, and linear acceleration type was found to have the least harmful emission concentration.

INTRODUCTION OF T -HARMONIC MAPS

  • Mehran Aminian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.109-129
    • /
    • 2023
  • In this paper, we introduce a second order linear differential operator T□: C (M) → C (M) as a natural generalization of Cheng-Yau operator, [8], where T is a (1, 1)-tensor on Riemannian manifold (M, h), and then we show on compact Riemannian manifolds, divT = divTt, and if divT = 0, and f be a smooth function on M, the condition T□ f = 0 implies that f is constant. Hereafter, we introduce T-energy functionals and by deriving variations of these functionals, we define T-harmonic maps between Riemannian manifolds, which is a generalization of Lk-harmonic maps introduced in [3]. Also we have studied fT-harmonic maps for conformal immersions and as application of it, we consider fLk-harmonic hypersurfaces in space forms, and after that we classify complete fL1-harmonic surfaces, some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hypersurfaces, and we show that there exists no compact fLk-harmonic hypersurface either in the Euclidean space or in the hyperbolic space or in the Euclidean hemisphere. As well, some properties and examples of these definitions are given.

Estimation of Quantitative Source Contribution of Ambient PM-10 Using the PMF Model (PMF모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.719-731
    • /
    • 2003
  • In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The receptor methods were one of the statistical methods to achieve reasonable air pollution strategies. Also, receptor methods, a field of chemometrics, is based on manifold applied statistics and is a statistical methodology that analyzes the physicochemical properties of gaseous and particulate pollutant on various atmospheric receptors, identifies the sources of air pollutants, and quantifies the apportionment of the sources to the receptors. The objective of this study was 1) after obtaining results from the PMF modeling, the existing sources of air at the study area were qualitatively identified and the contributions of each source were quantitatively estimated as well. 2) finally efficient air pollution management and control strategies of each source were suggested. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols, the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided quantitative source contributions (scaled G matrix) and source profiles (scaled F matrix). The results of the PMF modeling showed that the sources were apportioned by secondary aerosol related source 28.8 %, soil related source 16.8%, waste incineration source 11.5%, field burning source 11.0%, fossil fuel combustion source 10%, industry related source 8.3%, motor vehicle source 7.9%, oil/coal combustion source 4.4%, non-ferrous metal source 0.3%. and aged sea- salt source 0.2%, respectively.

IDEALS IN A TRIDIAGONAL ALGEBRA ALGL

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.257-267
    • /
    • 2016
  • We find examples of Ideals in a tridiagonal algebra ALGL and study some properties of Ideals in ALGL. We prove the following theorems: Let k and j be fixed natural numbers. Let A be a subalgebra of ALGL and let A2,{k} ⊂ A ⊂ {T ∈ ALGL | T(2k-1,2k) = 0}. Then A is an ideal of ALGL if and only if A = A2,{k} where A2,{k} = {T ∈ ALGL | T(2k-1,2k) = 0, T(2k-1,2k-1) = T(2k,2k) = 0}. Let B be a subalgebra of ALGL such that B2,{j} ⊂ B ⊂ {T ∈ ALGL | T(2j+1,2j) = 0}. Then B is an ideal of ALGL if and only if B = B2,{j}, where B2,{j} = {T ∈ ALGL | T(2j+1,2j) = 0, T(2j,2j) = T(2j+1,2j+1) = 0}.

An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector (고압 천연 가스 인젝터의 분무 특성에 관한 연구)

  • THONGCHAI, SAKDA;KANG, YUJIN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.

Super Resolution Technique Through Improved Neighbor Embedding (개선된 네이버 임베딩에 의한 초해상도 기법)

  • Eum, Kyoung-Bae
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.737-743
    • /
    • 2014
  • For single image super resolution (SR), interpolation based and example based algorithms are extensively used. The interpolation algorithms have the strength of theoretical simplicity. However, those algorithms are tending to produce high resolution images with jagged edges, because they are not able to use more priori information. Example based algorithms have been studied in the past few years. For example based SR, the nearest neighbor based algorithms are extensively considered. Among them, neighbor embedding (NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the sizes of local training sets are always too small. So, NE algorithm is weak in the performance of the visuality and quantitative measure by the poor generalization of nearest neighbor estimation. An improved NE algorithm with Support Vector Regression (SVR) was proposed to solve this problem. Given a low resolution image, the pixel values in its high resolution version are estimated by the improved NE. Comparing with bicubic and NE, the improvements of 1.25 dB and 2.33 dB are achieved in PSNR. Experimental results show that proposed method is quantitatively and visually more effective than prior works using bicubic interpolation and NE.